Wavelets, tiling, and spectral sets

被引:36
|
作者
Wang, Y [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
D O I
10.1215/S0012-7094-02-11413-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a function phi is an element of L-2 (R-d) such that {\ det(D)\(1/2)phi(Dx - lambda) : D is an element of D, lambda is an element of F} forms an orthogonal basis for L-2(R-d), where D subset of M-d(R) and F subset of R-d. Such a function phi is called a wavelet with respect to the dilation set D and translation set T. We study the following question: Under what conditions can a D subset of M-d(R) and a T subset of R-d be used as, respectively; the dilation set and the translation set of a wavelet? When restricted to wavelets of the form phi = chiOmega, this question has a surprising tie to spectral sets and their spectra.
引用
收藏
页码:43 / 57
页数:15
相关论文
共 50 条
  • [1] Riesz Wavelets, Tiling and Spectral Sets in LCA Groups
    Mayeli, Azita
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) : 1177 - 1195
  • [2] Riesz Wavelets, Tiling and Spectral Sets in LCA Groups
    Azita Mayeli
    Complex Analysis and Operator Theory, 2019, 13 : 1177 - 1195
  • [3] Spectral sets and weak tiling
    Kolountzakis, Mihail N.
    Lev, Nir
    Matolcsi, Mate
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2023, 21 (02):
  • [4] Tiling sets and spectral sets over finite fields
    Aten, C.
    Ayachi, B.
    Bau, E.
    FitzPatrick, D.
    Iosevich, A.
    Liu, H.
    Lott, A.
    MacKinnon, I.
    Maimon, S.
    Nan, S.
    Pakianathan, J.
    Petridis, G.
    Mena, C. Rojas
    Sheikh, A.
    Tribone, T.
    Weill, J.
    Yu, C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (08) : 2547 - 2577
  • [5] Universal spectra, universal tiling sets and the spectral set conjecture
    Pedersen, S
    Wang, Y
    MATHEMATICA SCANDINAVICA, 2001, 88 (02) : 246 - 256
  • [6] Spectral and tiling properties for a class of planar self-affine sets
    Liu, Jing-Cheng
    Liu, Qiao-Qin
    Tang, Min-Wei
    CHAOS SOLITONS & FRACTALS, 2023, 173
  • [7] Inflation and wavelets for the icosahedral Danzer tiling
    Kramer, P
    Andrle, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (10): : 3443 - 3457
  • [8] Tiling groups with difference sets
    Custic, Ante
    Krcadinac, Vedran
    Zhou, Yue
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (02):
  • [9] Nonuniform wavelets and wavelet sets related to one-dimensional spectral pairs
    Yu, Xiaojiang
    Gabardo, Jean-Pierre
    JOURNAL OF APPROXIMATION THEORY, 2007, 145 (01) : 133 - 139
  • [10] Haar wavelets for the quasiperiodic icosahedral Danzer tiling.
    Andrle, M
    Kramer, P
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 189 - 191