A boundary point lemma for Black-Scholes type operators

被引:0
|
作者
Ekström, E
Tysk, J
机构
[1] Univ Manchester, Sch Math, Manchester M60 1QD, Lancs, England
[2] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
关键词
Hopf boundary point lemma; parabolic equations; degenerate equations; Black-Scholes equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a sharp version of the Hopf boundary point lemma for Black-Scholes type equations. We also investigate the existence and the regularity of the spatial derivative of the solutions at the spatial boundary.
引用
收藏
页码:505 / 514
页数:10
相关论文
共 50 条
  • [31] The Black-Scholes paper: a personal perspective
    Neuberger, Anthony
    DECISIONS IN ECONOMICS AND FINANCE, 2023, 46 (02) : 713 - 730
  • [32] UNBIASED ESTIMATION OF THE BLACK-SCHOLES FORMULA
    BUTLER, JS
    SCHACHTER, B
    JOURNAL OF FINANCIAL ECONOMICS, 1986, 15 (03) : 341 - 357
  • [33] The binomial Black-Scholes model and the Greeks
    Chung, SL
    Shackleton, M
    JOURNAL OF FUTURES MARKETS, 2002, 22 (02) : 143 - 153
  • [34] NUMERICAL APPROXIMATION OF BLACK-SCHOLES EQUATION
    Dura, Gina
    Mosneagu, Ana-Maria
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (01): : 39 - 64
  • [35] CHAOTIC SOLUTION FOR THE BLACK-SCHOLES EQUATION
    Emamirad, Hassan
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (06) : 2043 - 2052
  • [36] BLACK-SCHOLES PRICING PROBLEM - COMMENT
    MIKHEEV, LV
    JOURNAL DE PHYSIQUE I, 1995, 5 (02): : 217 - 218
  • [37] Conserved densities of the Black-Scholes equation
    Qin, MC
    Mei, FX
    Shang, M
    CHINESE PHYSICS LETTERS, 2005, 22 (04) : 785 - 786
  • [38] Black-Scholes' model and Bollinger bands
    Liu, Wei
    Huang, Xudong
    Zheng, Weian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 371 (02) : 565 - 571
  • [39] HEDGE PORTFOLIOS AND THE BLACK-SCHOLES EQUATIONS
    ANDERSON, WJ
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1984, 2 (01) : 1 - 11
  • [40] Symmetry breaking for Black-Scholes equations
    Yang Xuan-Liu
    Zhang Shun-Li
    Qu Chang-Zheng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 47 (06) : 995 - 1000