A boundary point lemma for Black-Scholes type operators

被引:0
|
作者
Ekström, E
Tysk, J
机构
[1] Univ Manchester, Sch Math, Manchester M60 1QD, Lancs, England
[2] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
关键词
Hopf boundary point lemma; parabolic equations; degenerate equations; Black-Scholes equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a sharp version of the Hopf boundary point lemma for Black-Scholes type equations. We also investigate the existence and the regularity of the spatial derivative of the solutions at the spatial boundary.
引用
收藏
页码:505 / 514
页数:10
相关论文
共 50 条
  • [21] Stationary solutions for two nonlinear Black-Scholes type equations
    Amster, P
    Averbuj, CG
    Mariani, MC
    APPLIED NUMERICAL MATHEMATICS, 2003, 47 (3-4) : 275 - 280
  • [22] FROM BLACK-SCHOLES TO BLACK-HOLES
    OBRIEN, T
    JOURNAL OF FINANCE, 1993, 48 (04): : 1560 - 1562
  • [23] Existence and uniqueness results for a semilinear Black-Scholes type equation
    Sowrirajan, R.
    Balachandran, K.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 2796 - 2809
  • [24] Symmetry Breaking for Black-Scholes Equations
    YANG Xuan-Liu~(1
    CommunicationsinTheoreticalPhysics, 2007, 47 (06) : 995 - 1000
  • [25] The Black-Scholes equation in the presence of arbitrage
    Farinelli, Simone
    Takada, Hideyuki
    QUANTITATIVE FINANCE, 2022, 22 (12) : 2155 - 2170
  • [26] Black-Scholes Formula in Subdiffusive Regime
    Marcin Magdziarz
    Journal of Statistical Physics, 2009, 136 : 553 - 564
  • [27] Black-Scholes for scientific computing students
    Higham, DJ
    COMPUTING IN SCIENCE & ENGINEERING, 2004, 6 (06) : 72 - 79
  • [28] BLACK-SCHOLES REPRESENTATION FOR ASIAN OPTIONS
    Vecer, Jan
    MATHEMATICAL FINANCE, 2014, 24 (03) : 598 - 626
  • [29] PARAMETER ESTIMATION IN A BLACK-SCHOLES MODEL
    Bayram, Mustafa
    Orucova Buyukoz, Gulsen
    Partal, Tugcem
    THERMAL SCIENCE, 2018, 22 : S117 - S122
  • [30] Black-Scholes Formula in Subdiffusive Regime
    Magdziarz, Marcin
    JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (03) : 553 - 564