Extrinsic hyperspheres in manifolds with special holonomy

被引:3
|
作者
Jentsch, Tillmann [1 ]
Moroianu, Andrei [2 ]
Semmelmann, Uwe [1 ]
机构
[1] Univ Stuttgart, Fachbereich Math, Inst Geometrie & Topol, D-70569 Stuttgart, Germany
[2] Ecole Polytech, CNRS, CMLS, UMR 7640, F-91128 Palaiseau, France
关键词
Extrinsic spheres; Special holonomy; Hypersurfaces; COMPACT SYMMETRIC-SPACES; SPHERES; HYPERSURFACES; PRODUCTS;
D O I
10.1016/j.difgeo.2012.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe extrinsic hyperspheres and totally geodesic hypersurfaces in manifolds with special holonomy. In particular we prove the nonexistence of extrinsic hyperspheres in quaternion-Kahler manifolds. We develop a new approach to extrinsic hyperspheres based on the classification of special Killing forms. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 111
页数:8
相关论文
共 50 条
  • [31] Special holonomy manifolds, domain walls, intersecting branes and T-folds
    Chaemjumrus, N.
    Hull, C. M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (03)
  • [32] Affine manifolds with diagonal holonomy
    Nam, Kwan Hui
    GEOMETRIAE DEDICATA, 2012, 157 (01) : 205 - 216
  • [33] HORIZONTAL HOLONOMY AND FOLIATED MANIFOLDS
    Chitour, Yacine
    Grong, Erlend
    Jean, Frederic
    Kokkonen, Petri
    ANNALES DE L INSTITUT FOURIER, 2019, 69 (03) : 1047 - 1086
  • [34] Compact manifolds with exceptional holonomy
    Joyce, D
    GEOMETRY AND PHYSICS, 1997, 184 : 245 - 252
  • [35] AFFINE MANIFOLDS WITH NILPOTENT HOLONOMY
    FRIED, D
    GOLDMAN, W
    HIRSCH, MW
    COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (04) : 487 - 523
  • [36] Horizontal Holonomy for Affine Manifolds
    Boutheina Hafassa
    Amina Mortada
    Yacine Chitour
    Petri Kokkonen
    Journal of Dynamical and Control Systems, 2016, 22 : 413 - 440
  • [37] HOLONOMY STRUCTURE OF PARAMETER MANIFOLDS
    MARTINEZ, JC
    PHYSICS LETTERS A, 1989, 140 (09) : 461 - 463
  • [38] Holonomy of Einstein Lorentzian manifolds
    Galaev, Anton S.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (07)
  • [39] Supertubes in reduced holonomy manifolds
    Gomis, J
    Mateos, T
    Silva, PJ
    Van Proeyen, A
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (14) : 3113 - 3127
  • [40] Affine manifolds with diagonal holonomy
    Kwan Hui Nam
    Geometriae Dedicata, 2012, 157 : 205 - 216