Supertubes in reduced holonomy manifolds

被引:4
|
作者
Gomis, J
Mateos, T
Silva, PJ
Van Proeyen, A
机构
[1] Univ Barcelona, Inst Fis Altes Energies, Fac Fis, Dept ECM, E-08028 Barcelona, Spain
[2] CER Astrophys Particle Phys & Cosmol, E-08028 Barcelona, Spain
[3] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[4] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
[5] Katholieke Univ Leuven, Inst Theoret Fys, B-3001 Louvain, Belgium
关键词
D O I
10.1088/0264-9381/20/14/314
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the supertube configurations exist in all supersymmetric type IIA backgrounds which are purely geometrical and which have, at least, one flat direction. In other words, they exist in any spacetime of the form R-1,R-1 X M-8, with M-8 being any of the usual reduced holonomy manifolds. These generalized supertubes preserve 1/4 of the supersymmetries preserved by the choice of the manifold M-8. We also support this picture with the construction of their corresponding family of HA supergravity backgrounds preserving from 1/4 to 1/32 of the total supercharges.
引用
收藏
页码:3113 / 3127
页数:15
相关论文
共 50 条
  • [1] Supertubes and special holonomy
    Grandi, NE
    Lugo, AR
    PHYSICS LETTERS B, 2003, 553 (3-4) : 293 - 300
  • [2] Nearly Kahler 6-manifolds with reduced holonomy
    Belgun, F
    Moroianu, A
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2001, 19 (04) : 307 - 319
  • [3] Manifolds with holonomy
    Hitchin, Nigel
    REVISTA MATEMATICA COMPLUTENSE, 2014, 27 (02): : 351 - 368
  • [4] Nearly Kähler 6-Manifolds with Reduced Holonomy
    Florin Belgun
    Andrei Moroianu
    Annals of Global Analysis and Geometry, 2001, 19 : 307 - 319
  • [5] On the holonomy of lorentzian manifolds
    Bergery, L. Berard
    Ikemakhen, A.
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (03):
  • [6] Geometry of manifolds with special holonomy: "100 years of holonomy"
    Bryant, RL
    150 Years of Mathematics at Washington University in St. Louis, 2006, 395 : 29 - 38
  • [7] Affine manifolds with diagonal holonomy
    Nam, Kwan Hui
    GEOMETRIAE DEDICATA, 2012, 157 (01) : 205 - 216
  • [8] HORIZONTAL HOLONOMY AND FOLIATED MANIFOLDS
    Chitour, Yacine
    Grong, Erlend
    Jean, Frederic
    Kokkonen, Petri
    ANNALES DE L INSTITUT FOURIER, 2019, 69 (03) : 1047 - 1086
  • [9] Compact manifolds with exceptional holonomy
    Joyce, D
    GEOMETRY AND PHYSICS, 1997, 184 : 245 - 252
  • [10] AFFINE MANIFOLDS WITH NILPOTENT HOLONOMY
    FRIED, D
    GOLDMAN, W
    HIRSCH, MW
    COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (04) : 487 - 523