Supertubes and special holonomy

被引:11
|
作者
Grandi, NE [1 ]
Lugo, AR [1 ]
机构
[1] Natl Univ La Plata, Dept Fis, Fac Ciencias Exactas, RA-1900 La Plata, Argentina
关键词
D O I
10.1016/S0370-2693(02)03200-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We obtain a (1/4)-supersymmetric 6-brane solution of IIA supergravity by T-dualizing the supertube recently found. The resulting C-1 electric charge is related to the original D0-brane charge. The uplifted solution to eleven dimensions results to be a purely geometrical configuration. which can be interpreted as a bound state of a Taub-NUT space and a pp-wave. Being the non-trivial part of the metric pseudo-Riemannian, the resulting reduced holonomy group is non-compact and locally isomorphic to a semidirect product of an Abelian four-dimensional group and SU(2). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:293 / 300
页数:8
相关论文
共 50 条
  • [1] Supertubes in reduced holonomy manifolds
    Gomis, J
    Mateos, T
    Silva, PJ
    Van Proeyen, A
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (14) : 3113 - 3127
  • [2] Geometry of manifolds with special holonomy: "100 years of holonomy"
    Bryant, RL
    150 Years of Mathematics at Washington University in St. Louis, 2006, 395 : 29 - 38
  • [3] Branes in special holonomy backgrounds
    Loewy, A
    Oz, Y
    PHYSICS LETTERS B, 2002, 537 (1-2) : 147 - 154
  • [4] Instantons on special holonomy manifolds
    Ivanova, Tatiana A.
    Popov, Alexander D.
    PHYSICAL REVIEW D, 2012, 85 (10):
  • [5] Supertubes
    Mateos, D
    Townsend, PK
    PHYSICAL REVIEW LETTERS, 2001, 87 (01)
  • [6] Supertubes
    Avouris, P
    IEEE SPECTRUM, 2004, 41 (08) : 40 - 45
  • [7] Coset construction of metrics with special holonomy
    Naka, M
    STRING THEORY, 2002, 607 : 181 - 184
  • [8] On the formality problem for manifolds with special holonomy
    Taimanov, Iskander A.
    FILOMAT, 2023, 37 (25) : 8709 - 8718
  • [9] Homogeneous connections with special symplectic holonomy
    Lorenz J. Schwachhöfer
    Mathematische Zeitschrift, 2001, 238 : 655 - 688
  • [10] Homogeneous connections with special symplectic holonomy
    Schwachhöfer, LJ
    MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (04) : 655 - 688