On the Challenges of Mobile Crowdsensing for Traffic Estimation

被引:8
|
作者
Gil, Daniela Socas [1 ,2 ]
d'Orey, Pedro M. [3 ]
Aguiar, Ana [3 ]
机构
[1] Univ Simon Bolivar, Caracas, Venezuela
[2] Univ Porto, Porto, Portugal
[3] Univ Porto, Inst Telecomunicacoes, Porto, Portugal
关键词
Crowdsensing; traffic estimation;
D O I
10.1145/3131672.3136958
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traffic congestion adversely impacts our lives. Traffic estimation resorting to mobile (crowdsensing) probes is a challenging task. We present key challenges for accurate and real-time traffic estimation resorting to crowdsensing data, namely data sparsity, user trip diversity, population bias, data quality, among others. We propose solutions to address some of these issues and demonstrate the relevance of others through an exploratory data analysis.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Mobile Crowdsensing with Imagery Tasks
    Dautaras, Justas
    Matskin, Mihhail
    PROCEEDINGS OF 2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY WORKSHOPS AND SPECIAL SESSIONS: (WI-IAT WORKSHOP/SPECIAL SESSION 2021), 2021, : 54 - 61
  • [32] Noise-Aware Optimization for Mobile Crowdsensing-Based Travel Time Estimation
    Guo, Xiaoyu
    Xing, Weiwei
    Fang, Jun
    Chen, Jia
    Chen, Xi
    Gao, Ruipeng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (03) : 4067 - 4080
  • [33] RTS: road topology-based scheme for traffic condition estimation via vehicular crowdsensing
    Shao, Lu
    Wang, Cheng
    Liu, Lu
    Jiang, Changjun
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, 29 (03):
  • [34] AI-based Security Design of Mobile Crowdsensing Systems: Review, Challenges and Case Studies
    Zhang, Yuegian
    Kantarci, Burak
    2019 13TH IEEE INTERNATIONAL CONFERENCE ON SERVICE-ORIENTED SYSTEM ENGINEERING (SOSE) / 10TH INTERNATIONAL WORKSHOP ON JOINT CLOUD COMPUTING (JCC) / IEEE INTERNATIONAL WORKSHOP ON CLOUD COMPUTING IN ROBOTIC SYSTEMS (CCRS), 2019, : 17 - 26
  • [35] Preserving Privacy in Mobile Crowdsensing within Intelligent Transportation System: Current Research and Future Challenges
    Maqour, Zaina
    El Bakkali, Hanan
    Benhaddou, Driss
    Benbrahim, Houda
    El Gadi, Hajar
    Abou-Zbiba, Wahiba
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 307 - 312
  • [36] Mobile AR Depth Estimation: Challenges & Prospects
    Ganj, Ashkan
    Zhao, Yiqin
    Su, Hang
    Guo, Tian
    PROCEEDINGS OF THE 2024 THE 25TH INTERNATIONAL WORKSHOP ON MOBILE COMPUTING SYSTEMS AND APPLICATIONS, HOTMOBILE 2024, 2024, : 21 - 26
  • [37] Toward Efficient Mechanisms for Mobile Crowdsensing
    Zhang, Xinglin
    Yang, Zheng
    Liu, Yunhao
    Li, Jianqiang
    Ming, Zhong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (02) : 1760 - 1771
  • [38] Maximum Profit Routing for Mobile Crowdsensing
    Li, Zhiyao
    Zhang, Jiale
    Gao, Xiaofeng
    Chen, Guihai
    2022 21ST ACM/IEEE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN 2022), 2022, : 441 - 450
  • [39] A Reference Architecture for Mobile Crowdsensing Platforms
    Diniz, Herbertt B. M.
    Silva, Emanoel C. G. F.
    Nogueira, Thomas C. C.
    Gama, Kiev
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 2 (ICEIS), 2016, : 600 - 607
  • [40] Detecting Mobile Crowdsensing Context in the Wild
    Agarwal, Rachit
    Chopra, Shaan
    Christophides, Vassilis
    Georgantas, Nikolaos
    Issarny, Valerie
    2019 20TH INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2019), 2019, : 170 - 175