Mobile AR Depth Estimation: Challenges & Prospects

被引:1
|
作者
Ganj, Ashkan [1 ]
Zhao, Yiqin [1 ]
Su, Hang [2 ]
Guo, Tian [1 ]
机构
[1] Worcester Polytech Inst, Worcester, MA 01609 USA
[2] Nvidia Res, Santa Clara, CA USA
基金
美国国家科学基金会;
关键词
D O I
10.1145/3638550.3641122
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Accurate metric depth can help achieve more realistic user interactions such as object placement and occlusion detection in mobile augmented reality (AR). However, it can be challenging to obtain metricly accurate depth estimation in practice. We tested four different state-of-the-art (SOTA) monocular depth estimation models on a newly introduced dataset (ARKitScenes) and observed obvious performance gaps on this real-world mobile dataset. We categorize the challenges to hardware, data, and model-related challenges and propose promising future directions, including (i) using more hardware-related information from the mobile device's camera and other available sensors, (ii) capturing high-quality data to reflect real-world AR scenarios, and (iii) designing a model architecture to utilize the new information.
引用
收藏
页码:21 / 26
页数:6
相关论文
共 50 条
  • [1] MOBILE SOCIAL NETWORKS: PROSPECTS AND CHALLENGES
    Kato, Nei
    IEEE NETWORK, 2016, 30 (06): : 2 - 2
  • [2] Monocular Depth Estimation for Mobile Device
    Lee, Yongsik
    Lee, Seungjae
    Ko, Jong Gook
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA), 2021,
  • [3] Challenges of Depth Estimation for Transparent Objects
    Weibel, Jean-Baptiste
    Sebeto, Paolo
    Thalhammer, Stefan
    Vincze, Markus
    ADVANCES IN VISUAL COMPUTING, ISVC 2023, PT I, 2023, 14361 : 277 - 288
  • [4] Gaze Depth Estimation for In-vehicle AR Displays
    Uramune, Ryusei
    Sawamura, Kazuki
    Ikeda, Sei
    Ishizuka, Hiroki
    Oshiro, Osamu
    PROCEEDINGS OF THE 4TH AUGMENTED HUMANS INTERNATIONAL CONFERENCE 2023, AHS2023, 2023, : 323 - 325
  • [5] On the Challenges of Mobile Crowdsensing for Traffic Estimation
    Gil, Daniela Socas
    d'Orey, Pedro M.
    Aguiar, Ana
    PROCEEDINGS OF THE 15TH ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS (SENSYS'17), 2017,
  • [6] Robust depth estimation for mobile robot navigation
    Zhong, ZG
    Yi, JQ
    Zhao, DB
    Hong, YP
    Li, XZ
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON INTELLIGENT MECHATRONICS AND AUTOMATION, 2004, : 970 - 975
  • [7] Pop lyrics and mobile language learning: Prospects and challenges
    Werner V.
    Lehl M.
    Walton J.
    International Journal of Mobile and Blended Learning, 2017, 9 (04) : 33 - 48
  • [8] Anytime Stereo Image Depth Estimation on Mobile Devices
    Wang, Yan
    Lai, Zihang
    Huang, Gao
    Wang, Brian H.
    van der Maaten, Laurens
    Campbell, Mark
    Weinberger, Kilian Q.
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 5893 - 5900
  • [9] Depth Estimation for a Mobile Platform Using Monocular Vision
    Said, Z.
    Sundaraj, K.
    Wahab, M. N. A.
    INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS 2012 (IRIS 2012), 2012, 41 : 945 - 950
  • [10] PhoneDepth: A Dataset for Monocular Depth Estimation on Mobile Devices
    Benavides, Fausto Tapia
    Ignatov, Andrey
    Timofte, Radu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3048 - 3055