On the Challenges of Mobile Crowdsensing for Traffic Estimation

被引:8
|
作者
Gil, Daniela Socas [1 ,2 ]
d'Orey, Pedro M. [3 ]
Aguiar, Ana [3 ]
机构
[1] Univ Simon Bolivar, Caracas, Venezuela
[2] Univ Porto, Porto, Portugal
[3] Univ Porto, Inst Telecomunicacoes, Porto, Portugal
关键词
Crowdsensing; traffic estimation;
D O I
10.1145/3131672.3136958
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traffic congestion adversely impacts our lives. Traffic estimation resorting to mobile (crowdsensing) probes is a challenging task. We present key challenges for accurate and real-time traffic estimation resorting to crowdsensing data, namely data sparsity, user trip diversity, population bias, data quality, among others. We propose solutions to address some of these issues and demonstrate the relevance of others through an exploratory data analysis.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Sparse Mobile Crowdsensing: Challenges and Opportunities
    Wang, Leye
    Zhang, Daqing
    Wang, Yasha
    Chen, Chao
    Han, Xiao
    M'hamed, Abdallah
    IEEE COMMUNICATIONS MAGAZINE, 2016, 54 (07) : 161 - 167
  • [2] Mobile Crowdsensing: Current State and Future Challenges
    Ganti, Raghu K.
    Ye, Fan
    Lei, Hui
    IEEE COMMUNICATIONS MAGAZINE, 2011, 49 (11) : 32 - 39
  • [3] Traffic Condition Estimation Using Vehicular Crowdsensing Data
    Shao, Lu
    Wang, Cheng
    Li, Zhong
    Jiang, Changjun
    2015 IEEE 34TH INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC), 2015,
  • [4] Quality of Information in Mobile Crowdsensing: Survey and Research Challenges
    Restuccia, Francesco
    Ghosh, Nirnay
    Bhattacharjee, Shameek
    Das, Sajal K.
    Melodia, Tommaso
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2017, 13 (04)
  • [5] A Survey on Mobile Crowdsensing Systems: Challenges, Solutions, and Opportunities
    Capponi, Andrea
    Fiandrino, Claudio
    Kantarci, Burak
    Foschini, Luca
    Kliazovich, Dzmitry
    Bouvry, Pascal
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2019, 21 (03): : 2419 - 2465
  • [6] CrowdPatrol: A Mobile Crowdsensing Framework for Traffic Violation Hotspot Patrolling
    Jiang, Zhihan
    Zhu, Hang
    Zhou, Binbin
    Lu, Chenhui
    Sun, Mingfei
    Ma, Xiaojuan
    Fan, Xiaoliang
    Wang, Cheng
    Chen, Longbiao
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (03) : 1401 - 1416
  • [7] Holistic Reality Examination on Practical Challenges in A Mobile CrowdSensing Application
    Song, Xintong
    Ye, Fan
    Li, Xiaoming
    Yang, Yuanyuan
    2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2016,
  • [8] CTTE: Customized Travel Time Estimation via Mobile Crowdsensing
    Gao, Ruipeng
    Sun, Fuyong
    Xing, Weiwei
    Tao, Dan
    Fang, Jun
    Chai, Hua
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19335 - 19347
  • [9] Context-Aware Data Quality Estimation in Mobile Crowdsensing
    Liu, Shengzhong
    Zheng, Zhenzhe
    Wu, Fan
    Tang, Shaojie
    Chen, Guihai
    IEEE INFOCOM 2017 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2017,
  • [10] Quality Estimation for Scarce Scenarios Within Mobile Crowdsensing Systems
    Azmy, Sherif B.
    Zorba, Nizar
    Hassanein, Hossam S.
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (11) : 10955 - 10968