PhoneDepth: A Dataset for Monocular Depth Estimation on Mobile Devices

被引:4
|
作者
Benavides, Fausto Tapia [1 ]
Ignatov, Andrey [1 ]
Timofte, Radu [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] JMU Wurzburg, Wurzburg, Germany
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022 | 2022年
关键词
D O I
10.1109/CVPRW56347.2022.00344
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Monocular depth estimation has been studied as a classic and learning based computer vision problem for decades. However, little attention received the efficiency and the deployment of methods on mobile hardware. All publicly available datasets have severe limitations related to their applicability to camera data captured with real mobile devices. For instance, the main issues with current datasets include (but not exhaustively) low quality of images due the cameras or collection methods, domain specifically generated datasets as is the case for autonomous driving, small number of samples, sparse depthmaps, etc. In response, we introduce PhoneDepth, a novel dataset that aims to take advantage of modern phones hardware and professional stereo cameras. Depthmaps are acquired from three sources: Time of Flight sensor, Dual Pixel sensor and stereo camera; while the images correspond to mobile phone photos. We prove its high value by training neural networks with multiple depth supervision, fine-tuning on other datasets and for depth refinement. Along with the dataset we present benchmark models and a toolbox to facilitate the dataset usage.
引用
收藏
页码:3048 / 3055
页数:8
相关论文
共 50 条
  • [1] Knowledge Distillation for Fast and Accurate Monocular Depth Estimation on Mobile Devices
    Wang, Yiran
    Li, Xingyi
    Shi, Min
    Xian, Ke
    Cao, Zhiguo
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 2457 - 2465
  • [2] NEREON - An Underwater Dataset for Monocular Depth Estimation
    Dionisio, Joao M. M.
    Pereira, Pedro N. A. A. S.
    Leite, Pedro N.
    Neves, Francisco S.
    Tavares, Joao Manuel R. S.
    Pinto, Andry M.
    OCEANS 2023 - LIMERICK, 2023,
  • [3] Monocular Depth Estimation for Mobile Device
    Lee, Yongsik
    Lee, Seungjae
    Ko, Jong Gook
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA), 2021,
  • [4] Lightweight Monocular Depth Estimation on Edge Devices
    Liu, Siping
    Yang, Laurence Tianruo
    Tu, Xiaohan
    Li, Renfa
    Xu, Cheng
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (17) : 16168 - 16180
  • [5] Depth Estimation for a Mobile Platform Using Monocular Vision
    Said, Z.
    Sundaraj, K.
    Wahab, M. N. A.
    INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS 2012 (IRIS 2012), 2012, 41 : 945 - 950
  • [6] Monocular Depth Estimation for Glass Walls With Context: A New Dataset and Method
    Liang, Yuan
    Deng, Bailin
    Liu, Wenxi
    Qin, Jing
    He, Shengfeng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 15081 - 15097
  • [7] Efficient Monocular Depth Estimation for Edge Devices in Internet of Things
    Tu, Xiaohan
    Xu, Cheng
    Liu, Siping
    Li, Renfa
    Xie, Guoqi
    Huang, Jing
    Yang, Laurence Tianruo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (04) : 2821 - 2832
  • [8] METER: A Mobile Vision Transformer Architecture for Monocular Depth Estimation
    Papa, Lorenzo
    Russo, Paolo
    Amerini, Irene
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (10) : 5882 - 5893
  • [9] Delving Into Multi-Illumination Monocular Depth Estimation: A New Dataset and Method
    Liang, Yuan
    Zhang, Zitian
    Xian, Chuhua
    He, Shengfeng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1018 - 1032
  • [10] LightDepthNet: Lightweight CNN Architecture for Monocular Depth Estimation on Edge Devices
    Liu, Qingliang
    Zhou, Shuai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (04) : 2389 - 2393