SINGULAR INTEGRAL OPERATORS WITH ROUGH KERNELS ON CENTRAL MORREY SPACES WITH VARIABLE EXPONENT

被引:18
|
作者
Fu, Zunwei [1 ,2 ]
Lu, Shanzhen [3 ]
Wang, Hongbin [4 ,5 ]
Wang, Liguang [2 ]
机构
[1] Univ Suwon, Dept Comp Sci, Hwaseong Si 445743, Gyeonggi Do, South Korea
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273100, Shandong, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[4] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Shandong, Peoples R China
[5] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
lambda-central BMO spaces; central Morrey space; variable exponent; commutator; singular integral operator; WEIGHTED NORM INEQUALITIES; HARDY-SPACES; BOUNDEDNESS; COMMUTATORS; EQUATIONS;
D O I
10.5186/aasfm.2019.4431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define the lambda-central BMO spaces and the central Morrey spaces with variable exponent. We obtain the boundedness of the singular integral operator T-Omega,T-alpha and its commutator [b, T-Omega,T-alpha] on central Morrey spaces with variable exponent, where Omega is an element of L-s (Sn-1) for s >= 1 be homogeneous function of degree zero, 0 <= alpha < n and b be lambda-central BMO functions. As applications, we consider the regularity in the central Morrey spaces with variable exponent of strong solutions to nondivergence elliptic equations with VMO coefficients.
引用
收藏
页码:505 / 522
页数:18
相关论文
共 50 条
  • [31] Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents
    Wang, Hongbin
    Niu, Chenchen
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, 74 (02) : 493 - 514
  • [32] BOUNDEDNESS OF THE MAXIMAL, POTENTIAL AND SINGULAR OPERATORS IN THE GENERALIZED VARIABLE EXPONENT MORREY SPACES
    Guliyev, Vagif S.
    Hasanov, Javanshir J.
    Samko, Stefan G.
    MATHEMATICA SCANDINAVICA, 2010, 107 (02) : 285 - 304
  • [33] ON INTEGRAL OPERATORS WITH HOMOGENEOUS KERNELS IN MORREY SPACES
    Avsyankin, O. G.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (01): : 92 - 96
  • [34] Boundedness of a Class of Oscillatory Singular Integral Operators and Their Commutators with Rough Kernel on Weighted Central Morrey Spaces
    Zhou, Yongliang
    Yan, Dunyan
    Wei, Mingquan
    MATHEMATICS, 2020, 8 (09)
  • [35] Multilinear Fractional Integral Operators on Morrey Spaces with Variable Exponent on Bounded Domain
    Wang Min
    Qu Meng
    Shu Li-sheng
    Ji You-qing
    Communications in Mathematical Research, 2015, 31 (03) : 253 - 260
  • [36] ROUGH SINGULAR INTEGRAL OPERATORS AND ITS COMMUTATORS ON GENERALIZED WEIGHTED MORREY SPACES
    Guliyev, Vagif S.
    Hamzayev, Vugar H.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (03): : 863 - 881
  • [37] Singular integral operators and sublinear operators on Hardy local Morrey spaces with variable exponents
    Ho, Kwok-Pun
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 171
  • [38] PARABOLIC FRACTIONAL MAXIMAL AND INTEGRAL OPERATORS WITH ROUGH KERNELS IN PARABOLIC GENERALIZED MORREY SPACES
    Guliyev, Vagif S.
    Balakishiyev, Aydin S.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (01): : 257 - 276
  • [39] λ-central BMO estimates for commutators of singular integral operators with rough kernels
    Fu, Zun Wei
    Lin, Yan
    Lu, Shan Zhen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (03) : 373 - 386
  • [40] λ-central BMO estimates for commutators of singular integral operators with rough kernels
    Zun Wei Fu
    Yan Lin
    Shan Zhen Lu
    Acta Mathematica Sinica, English Series, 2008, 24 : 373 - 386