SINGULAR INTEGRAL OPERATORS WITH ROUGH KERNELS ON CENTRAL MORREY SPACES WITH VARIABLE EXPONENT

被引:18
|
作者
Fu, Zunwei [1 ,2 ]
Lu, Shanzhen [3 ]
Wang, Hongbin [4 ,5 ]
Wang, Liguang [2 ]
机构
[1] Univ Suwon, Dept Comp Sci, Hwaseong Si 445743, Gyeonggi Do, South Korea
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273100, Shandong, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[4] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Shandong, Peoples R China
[5] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
lambda-central BMO spaces; central Morrey space; variable exponent; commutator; singular integral operator; WEIGHTED NORM INEQUALITIES; HARDY-SPACES; BOUNDEDNESS; COMMUTATORS; EQUATIONS;
D O I
10.5186/aasfm.2019.4431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define the lambda-central BMO spaces and the central Morrey spaces with variable exponent. We obtain the boundedness of the singular integral operator T-Omega,T-alpha and its commutator [b, T-Omega,T-alpha] on central Morrey spaces with variable exponent, where Omega is an element of L-s (Sn-1) for s >= 1 be homogeneous function of degree zero, 0 <= alpha < n and b be lambda-central BMO functions. As applications, we consider the regularity in the central Morrey spaces with variable exponent of strong solutions to nondivergence elliptic equations with VMO coefficients.
引用
收藏
页码:505 / 522
页数:18
相关论文
共 50 条