Grobner-Shirshov bases for Lie superalgebras and their universal enveloping algebras

被引:26
|
作者
Bokut, LA [1 ]
Kang, SJ
Lee, KH
Malcolmson, P
机构
[1] Math Inst, Novosibirsk 630090, Russia
[2] Korea Inst Adv Study, Sch Math, Seoul 130010, South Korea
[3] Seoul Natl Univ, Dept Math, Seoul 151742, South Korea
[4] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
D O I
10.1006/jabr.1998.7810
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a set of monic polynomials in a free Lie superalgebra is a Grobner-Shirshov basis for a Lie superalgebra if and only if it is a Grobner-Shirshov basis for its universal enveloping algebra. We investigate the structure of Grobner-Shirshov bases for Kac-Moody superalgebras and give explicit constructions of Grobner-Shirshov bases for classical Lie superalgebras. (C) 1999 Academic Press.
引用
收藏
页码:461 / 495
页数:35
相关论文
共 50 条
  • [31] Grobner-Shirshov bases for semirings
    Bokut, L. A.
    Chen, Yuqun
    Mo, Qiuhui
    JOURNAL OF ALGEBRA, 2013, 385 : 47 - 63
  • [32] GROBNER-SHIRSHOV BASES FOR DIALGEBRAS
    Bokut, L. A.
    Chen, Yuqun
    Liu, Cihua
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2010, 20 (03) : 391 - 415
  • [33] Grobner-Shirshov bases and their calculation
    Bokut, L. A.
    Chen, Yuqun
    BULLETIN OF MATHEMATICAL SCIENCES, 2014, 4 (03) : 325 - 395
  • [34] Parafree augmented algebras and Grobner-Shirshov bases for complete augmented algebras
    Ivanov, Sergei O.
    Lopatkin, Viktor
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (11)
  • [35] Construction of free commutative Reynolds algebras by Grobner-Shirshov bases
    Zhang, Tianjie
    Gao, Xing
    Guo, Li
    JOURNAL OF SYMBOLIC COMPUTATION, 2023, 119 : 64 - 80
  • [36] Grobner-Shirshov bases for Kac-Moody algebras An and Bn
    Poroshenko, E
    FORMAL POWER SERIES AND ALGEBRAIC COMBINATORICS, 2000, : 552 - 563
  • [37] Construction of free differential algebras by extending Grobner-Shirshov bases
    Li, Yunnan
    Guo, Li
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 107 : 167 - 189
  • [38] Gröbner-Shirshov bases for universal enveloping conformal algebras of simple conformal Lie superalgebras of type WN
    Kolesnikov P.S.
    Algebra and Logic, 2004, 43 (2) : 109 - 122
  • [39] Free Ω-Rota-Baxter algebras and Grobner-Shirshov bases
    Chen, Dan
    Luo, Yan-Feng
    Zhang, Yi
    Zhang, Yuan-Yuan
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (07) : 1359 - 1373
  • [40] Representations of Ariki-Koike algebras and Grobner-Shirshov bases
    Kang, SJ
    Lee, IS
    Lee, KH
    Oh, HY
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2004, 89 : 54 - 70