共 50 条
Grobner-Shirshov bases for Lie superalgebras and their universal enveloping algebras
被引:26
|作者:
Bokut, LA
[1
]
Kang, SJ
Lee, KH
Malcolmson, P
机构:
[1] Math Inst, Novosibirsk 630090, Russia
[2] Korea Inst Adv Study, Sch Math, Seoul 130010, South Korea
[3] Seoul Natl Univ, Dept Math, Seoul 151742, South Korea
[4] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词:
D O I:
10.1006/jabr.1998.7810
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We show that a set of monic polynomials in a free Lie superalgebra is a Grobner-Shirshov basis for a Lie superalgebra if and only if it is a Grobner-Shirshov basis for its universal enveloping algebra. We investigate the structure of Grobner-Shirshov bases for Kac-Moody superalgebras and give explicit constructions of Grobner-Shirshov bases for classical Lie superalgebras. (C) 1999 Academic Press.
引用
收藏
页码:461 / 495
页数:35
相关论文