Strong skew commutativity preserving maps on von Neumann algebras

被引:25
|
作者
Qi, Xiaofei [1 ]
Hou, Jinchuan [1 ,2 ]
机构
[1] Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
[2] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Von Neumann algebras; Prime rings; General preserving maps; Skew Lie products; POLYNOMIAL XY; PRODUCT; YX;
D O I
10.1016/j.jmaa.2012.07.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a von Neumann algebra without central summands of type I-1. Assume that Phi : M -> M is a surjective map. It is shown that Phi is strong skew commutativity preserving (that is, satisfies Phi(A)Phi(B) - Phi(B)Phi(A)(*) = AB - BA(*) for all A, B is an element of M) if and only if there exists some self-adjoint element Z in the center of M with Z(2) = I such that Phi(A) = ZA for all A is an element of M. The strong skew commutativity preserving maps on prime involution rings and prime involution algebras are also characterized. (C) 2012 Published by Elsevier Inc.
引用
收藏
页码:362 / 370
页数:9
相关论文
共 50 条