Nonlinear maps preserving bi-skew Jordan triple product on factor von Neumann algebras

被引:0
|
作者
Dongfang Zhang
Changjing Li
YuanYuan Zhao
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
关键词
Factor von Neumann algebras; Isomorphism; Bi-skew Jordan product; 47B49; 46L40;
D O I
暂无
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} be a factor von Neumann algebra with dim(A)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}})\ge 2$$\end{document}. For any A,B∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A, B\in {\mathcal {A}}$$\end{document}, a product A▵B=A∗B+B∗A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A\mathbin {\triangle }B=A^{*}B+B^{*}A$$\end{document} is called a bi-skew Jordan product. In this paper, it is proved that every bijective map preserving bi-skew Jordan triple product on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is a linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or a conjugate linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or the negative of a linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, or the negative of a conjugate linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism.
引用
收藏
页码:578 / 586
页数:8
相关论文
共 50 条
  • [1] Nonlinear maps preserving bi-skew Jordan triple product on factor von Neumann algebras
    Zhang, Dongfang
    Li, Changjing
    Zhao, YuanYuan
    PERIODICA MATHEMATICA HUNGARICA, 2023, 86 (02) : 578 - 586
  • [2] Maps preserving the bi-skew Jordan product on factor von Neumann algebras
    Darvish, Vahid
    Razeghi, Mehran
    Nouri, Mojtaba
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (06) : 845 - 854
  • [3] Maps preserving bi-skew η-Jordan product on von Neumann algebras
    Darvish, Vahid
    Nouri, Mojtaba
    Razeghi, Mehran
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (02)
  • [4] Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras
    Changjing LI
    Quanyuan CHEN
    Ting WANG
    ChineseAnnalsofMathematics,SeriesB, 2018, (04) : 633 - 642
  • [5] Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras
    Changjing Li
    Quanyuan Chen
    Ting Wang
    Chinese Annals of Mathematics, Series B, 2018, 39 : 633 - 642
  • [6] Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras
    Li, Changjing
    Chen, Quanyuan
    Wang, Ting
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (04) : 633 - 642
  • [7] NONLINEAR MAPS PRESERVING THE JORDAN TRIPLE *-PRODUCT ON VON NEUMANN ALGEBRAS
    Li, Changjing
    Lu, Fangyan
    Wang, Ting
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (03): : 496 - 507
  • [8] Strong Bi-skew Commutativity Preserving Maps on von Neumann Algebras
    Qi, Xiaofei
    Chen, Shaobo
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (02)
  • [9] Strong Bi-skew Commutativity Preserving Maps on von Neumann Algebras
    Xiaofei Qi
    Shaobo Chen
    Bulletin of the Iranian Mathematical Society, 2023, 49
  • [10] Nonlinear bi-skew Jordan-type derivations on factor von Neumann algebras
    Ashraf, Mohammad
    Akhter, Md Shamim
    Ansari, Mohammad Afajal
    FILOMAT, 2023, 37 (17) : 5591 - 5599