The Power Series Cure Rate Model: An Application to a Cutaneous Melanoma Data

被引:27
|
作者
Cancho, Vicente G. [1 ]
Louzada, Francisco [1 ]
Ortega, Edwin M. [1 ]
机构
[1] Univ Sao Paulo SP, Dept Appl Math & Stat, Dept Exact Sci, BR-13566590 Sao Carlos, SP, Brazil
关键词
Competing Risks; Cure rate models; Power series distribution; INFLUENCE DIAGNOSTICS; REGRESSION-MODELS; SURVIVAL-DATA;
D O I
10.1080/03610918.2011.639971
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we propose a new cure rate survival model. In our approach the number of competing causes of the event of interest is assumed to follow an exponential discrete power series distribution. An advantage of our model is that it is very flexible, including several particular cases, such as, Bernoulli, geometric, Poisson, etc. Moreover, we derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform global influence analysis. Distribution fitting can be tested for the best fitting in a straightforward way. Maximum likelihood estimation is discussed. Our proposed model is illustrated through cutaneous melanoma data.
引用
收藏
页码:586 / 602
页数:17
相关论文
共 50 条
  • [31] The geometric power half-normal regression model with cure rate
    Gomez, Yolanda M.
    Bolfarine, Heleno
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (02): : 437 - 446
  • [32] The Destructive Zero-Inflated Power Series Cure Rate Models for Carcinogenesis Studies
    Pescim, Rodrigo R.
    Suzuki, Adriano K.
    Cordeiro, Gauss M.
    Ortega, Edwin M. M.
    REVSTAT-STATISTICAL JOURNAL, 2022, 20 (05) : 587 - 604
  • [33] A Bayesian Cure Rate Model Based on the Power Piecewise Exponential Distribution
    Mário de Castro
    Yolanda M. Gómez
    Methodology and Computing in Applied Probability, 2020, 22 : 677 - 692
  • [34] A Bayesian Cure Rate Model Based on the Power Piecewise Exponential Distribution
    de Castro, Mario
    Gomez, Yolanda M.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2020, 22 (02) : 677 - 692
  • [35] Survival models induced by zero-modified power series discrete frailty: Application with a melanoma data set
    Molina, Katy C.
    Calsavara, Vinicius F.
    Tomazella, Vera D.
    Milani, Eder A.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (08) : 1874 - 1889
  • [36] Cutaneous Melanoma: A case series of a Portuguese hospital
    Sampaio, R.
    Palla Garcia, J.
    Peixoto, C.
    Ramon Vizcaino, J.
    Almeida, T.
    VIRCHOWS ARCHIV, 2013, 463 (02) : 126 - 127
  • [37] Analysis of cure rate survival data under proportional odds model
    Yu Gu
    Debajyoti Sinha
    Sudipto Banerjee
    Lifetime Data Analysis, 2011, 17 : 123 - 134
  • [38] Analysis of cure rate survival data under proportional odds model
    Gu, Yu
    Sinha, Debajyoti
    Banerjee, Sudipto
    LIFETIME DATA ANALYSIS, 2011, 17 (01) : 123 - 134
  • [39] A marginal cure rate proportional hazards model for spatial survival data
    Schnell, Patrick
    Bandyopadhyay, Dipankar
    Reich, Brian J.
    Nunn, Martha
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2015, 64 (04) : 673 - 691
  • [40] A New Mixture Model With Cure Rate Applied to Breast Cancer Data
    Gallardo, Diego I.
    Brandao, Marcia
    Leao, Jeremias
    Bourguignon, Marcelo
    Calsavara, Vinicius
    BIOMETRICAL JOURNAL, 2024, 66 (06)