The Power Series Cure Rate Model: An Application to a Cutaneous Melanoma Data

被引:27
|
作者
Cancho, Vicente G. [1 ]
Louzada, Francisco [1 ]
Ortega, Edwin M. [1 ]
机构
[1] Univ Sao Paulo SP, Dept Appl Math & Stat, Dept Exact Sci, BR-13566590 Sao Carlos, SP, Brazil
关键词
Competing Risks; Cure rate models; Power series distribution; INFLUENCE DIAGNOSTICS; REGRESSION-MODELS; SURVIVAL-DATA;
D O I
10.1080/03610918.2011.639971
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we propose a new cure rate survival model. In our approach the number of competing causes of the event of interest is assumed to follow an exponential discrete power series distribution. An advantage of our model is that it is very flexible, including several particular cases, such as, Bernoulli, geometric, Poisson, etc. Moreover, we derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform global influence analysis. Distribution fitting can be tested for the best fitting in a straightforward way. Maximum likelihood estimation is discussed. Our proposed model is illustrated through cutaneous melanoma data.
引用
收藏
页码:586 / 602
页数:17
相关论文
共 50 条
  • [11] CUTANEOUS MELANOMA - OPPORTUNITY FOR CURE
    SOBER, AJ
    CA-A CANCER JOURNAL FOR CLINICIANS, 1991, 41 (04) : 197 - 199
  • [12] The Negative Binomial Beta Prime Regression Model with Cure Rate: Application with a Melanoma Dataset
    Jeremias Leão
    Marcelo Bourguignon
    Helton Saulo
    Manoel Santos-Neto
    Vinícius Calsavara
    Journal of Statistical Theory and Practice, 2021, 15
  • [13] The Negative Binomial Beta Prime Regression Model with Cure Rate: Application with a Melanoma Dataset
    Leao, Jeremias
    Bourguignon, Marcelo
    Saulo, Helton
    Santos-Neto, Manoel
    Calsavara, Vinicius
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2021, 15 (03)
  • [14] A new cure rate model with flexible competing causes with applications to melanoma and transplantation data
    Leao, Jeremias
    Bourguignon, Marcelo
    Gallardo, Diego, I
    Rocha, Ricardo
    Tomazella, Vera
    STATISTICS IN MEDICINE, 2020, 39 (24) : 3272 - 3284
  • [15] A simplified estimation procedure based on the EM algorithm for the power series cure rate model
    Gallardo, Diego I.
    Romeo, Jose S.
    Meyer, Renate
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (08) : 6342 - 6359
  • [16] On a new piecewise regression model with cure rate: Diagnostics and application to medical data
    Gomez, Yolanda M.
    Gallardo, Diego, I
    Leao, Jeremias
    Calsavara, Vinicius F.
    STATISTICS IN MEDICINE, 2021, 40 (29) : 6723 - 6742
  • [17] Power series cure rate model for spatially correlated interval-censored data based on generalized extreme value distribution
    Bao Yiqi
    Cancho, Vicente G.
    Dey, Dipak K.
    Balakrishnan, Narayanaswamy
    Suzuki, Adriano K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 364 (364)
  • [18] A clustering cure rate model with application to a sealantstudy
    Gallardo, Diego I.
    Bolfarine, Heleno
    Pedroso-de-Lima, Atonio Carlos
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (16) : 2949 - 2962
  • [19] Cure rate model with interval censored data
    Kim, Yang-Jin
    Jhun, Myoungshic
    STATISTICS IN MEDICINE, 2008, 27 (01) : 3 - 14
  • [20] Chronology of Metastasis in Cutaneous Melanoma: Growth Rate Model
    Tejera-Vaquerizo, Antonio
    Nagore, Eduardo
    Melendez, Juan J.
    Lopez-Navarro, Norberto
    Martorell-Calatayud, Antonio
    Herrera-Acosta, Enrique
    Traves, Victor
    Guillen, Carlos
    Herrera-Ceballos, Enrique
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2012, 132 (04) : 1215 - 1221