Interaction of a thin shock with turbulence. I. Effect on shock structure: Analytic model

被引:8
|
作者
Ao, Xianzhi [1 ,2 ,3 ]
Zank, Gary P. [1 ,2 ,3 ]
Pogorelov, Nikolai V. [2 ,3 ]
Shaikh, Dastgeer [2 ,3 ]
机构
[1] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Inst Geophys & Planetary Phys, Riverside, CA 92521 USA
[3] Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
D O I
10.1063/1.3041706
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A two-dimensional magnetohydrodynamical model describing the interaction of thin shock waves with turbulence is developed by adopting a multiscale perturbation analysis. The interaction is found to be governed by a two-dimensional inviscid Burgers' equation that includes "perturbation terms." Initially prescribed perturbation profiles are explored with numerical simulations to show how the shock front is modified by turbulence. Our numerical simulations show that magnetic field perturbations play a very important role in modifying the structure of perpendicular and parallel shocks. While turbulence can balance the nonlinear steepening of a shock wave at some regions, it can also help to create a larger jump in physical quantities such as the magnetic field at other regions. The plasma medium in these regions can therefore experience a higher compression, which will result in a downstream state that differs from the usual Rankine-Hugoniot state. (C) 2008 American Institute of Physics. [DOI:10.1063/1.3041706]
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Shock cooling emission from explosions of red supergiants - I. A numerically calibrated analytic model
    Morag, Jonathan
    Sapir, Nir
    Waxman, Eli
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 522 (02) : 2764 - 2776
  • [22] Conservative Formulation of the k-ε Turbulence Model for Shock-Turbulence Interaction
    Sinha, Krishnendu
    Balasridhar, S. J.
    AIAA JOURNAL, 2013, 51 (08) : 1872 - 1882
  • [23] Diffusive Cosmic-Ray Acceleration at Shock Waves of Arbitrary Speed with Magnetostatic Turbulence. I. General Theory and Correct Nonrelativistic Speed Limit
    Schlickeiser, R.
    Oppotsch, J.
    ASTROPHYSICAL JOURNAL, 2017, 850 (02):
  • [24] Assessment of a new sub-grid model for magnetohydrodynamical turbulence. I. Magnetorotational instability
    Miravet-Tenes, Miquel
    Cerda-Duran, Pablo
    Obergaulinger, Martin
    Font, Jose A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 517 (03) : 3505 - 3524
  • [25] Numerical simulation of strength of turbulence effect on normal shock/homogeneous turbulence interaction
    Jinnah, MA
    Takayama, K
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 942 - 945
  • [26] Rotating helical turbulence. I. Global evolution and spectral behavior
    Mininni, P. D.
    Pouquet, A.
    PHYSICS OF FLUIDS, 2010, 22 (03) : 5 - 9
  • [27] RENORMALIZATION GROUP ANALYSIS OF TURBULENCE. I. BASIC THEORY.
    Yakhot, Victor
    Orszag, Steven A.
    Journal of Scientific Computing, 1986, 1 (01) : 3 - 51
  • [28] The interaction of turbulence with the heliospheric termination shock
    Zank, G. P.
    Shaikh, Dastgeer
    Ao, X.
    PHYSICS OF THE INNER HELIOSHEATH: VOYAGER OBSERVATIONS, THEORY, AND FUTURE PROSPECTS, 2006, 858 : 308 - +
  • [29] Influence of a wavy boundary on turbulence. I. Highly rough surface
    Nakagawa, S
    Na, Y
    Hanratty, TJ
    EXPERIMENTS IN FLUIDS, 2003, 35 (05) : 422 - 436
  • [30] EFFECT OF THERMAL RADIATION ON THIN SHOCK STRUCTURE
    CHOW, RR
    AIAA JOURNAL, 1965, 3 (05) : 973 - &