The Cauchy problem for the integrable Novikov equation

被引:95
|
作者
Yan, Wei [1 ]
Li, Yongsheng [2 ]
Zhang, Yimin [3 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China
关键词
Cauchy problem; Novikov equation; Besov spaces; WELL-POSEDNESS; BESOV-SPACES;
D O I
10.1016/j.jde.2012.03.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the Cauchy problem for the integrable Novikov equation. By using the Littlewood-Paley decomposition and nonhomogeneous Besov spaces, we prove that the Cauchy problem for the integrable Novikov equation is locally well-posed in the Besov space B-p.r(s), with 1 <= p, r + infinity and s > max{1 + 1/p, 3/2} In particular, when u(0) is an element of B-p.r(s) boolean AND H-l with 1 <= p, r <= +infinity and s > max{1 + 1/p, 3/2}, for all t is an element of [0, T], we have that vertical bar vertical bar u(t)vertical bar vertical bar H-l = vertical bar vertical bar u(0)vertical bar vertical bar(H)l. We also prove that the local well-posedness of the Cauchy problem for the Novikov equation fails in B-2.(3/2)(infinity). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:298 / 318
页数:21
相关论文
共 50 条
  • [21] Analyticity of the Cauchy problem for an integrable evolution equation
    Himonas, AA
    Misiolek, G
    MATHEMATISCHE ANNALEN, 2003, 327 (03) : 575 - 584
  • [22] On the cauchy problem for an integrable equation with peakon solutions
    Yin, ZY
    ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (03) : 649 - 666
  • [23] Analyticity of the Cauchy problem for an integrable evolution equation
    A. Alexandrou Himonas
    Gerard Misiołek
    Mathematische Annalen, 2003, 327 : 575 - 584
  • [24] The global weak solutions to the Cauchy problem of the generalized Novikov equation
    Zhao, Yongye
    Li, Yongsheng
    Yan, Wei
    APPLICABLE ANALYSIS, 2015, 94 (07) : 1334 - 1354
  • [25] The Cauchy problem for a two-component Novikov equation in the critical Besov space
    Tang, Hao
    Liu, Zhengrong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) : 120 - 135
  • [26] On the Cauchy problem for the weakly dissipative modified Camassa-Holm-Novikov equation
    Wu, Jinhong
    Wang, Ying
    Zhu, Min
    MONATSHEFTE FUR MATHEMATIK, 2025, 206 (04): : 967 - 1007
  • [27] GLOBAL ANALYTIC SOLUTIONS AND TRAVELING WAVE SOLUTIONS OF THE CAUCHY PROBLEM FOR THE NOVIKOV EQUATION
    Wu, Xinglong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (04) : 1537 - 1550
  • [28] BIFURCATION OF PEAKONS AND CUSPONS OF THE INTEGRABLE NOVIKOV EQUATION
    Zhang, Lina
    Tang, Rongrong
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2015, 16 (02): : 168 - 175
  • [29] The periodic Cauchy problem for a combined CH-mCH integrable equation
    Liu, Xingxing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 143 : 138 - 154
  • [30] The Cauchy Problem for the Generalized Hyperbolic Novikov-Veselov Equation via the Moutard Symmetries
    Yurova, Alla A.
    Yurov, Artyom, V
    Yurov, Valerian A.
    SYMMETRY-BASEL, 2020, 12 (12): : 1 - 17