Carbon nucleation on Si(100) using a negative carbon ion beam

被引:13
|
作者
Ko, YW
Kim, SI
机构
[1] Dept. of Phys. and Eng. Physics, Stevens Institute of Technology, Hoboken
关键词
D O I
10.1116/1.580818
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The initial nucleation stages of carbon film on Si(100) substrates were investigated by low energy electron diffraction (LEED) and Auger electron Spectroscopy. In the initial stages, energetic carbon ions lead to a phase transformation from a two domain p(2 X 1) to a (1 X 1) LEED structure pattern after about 6 X 10(15) carbon ion/cm(2) dose (3 atomic layers). At room temperature, the energetic carbon ions are deposited as silicon carbide (SiC) up to a thickness of about 10 atomic layers. As the deposition temperature increases to 300 degrees C, the thickness of the SiC interlayer increases to 30 atomic layers. An increased carbon ion dose leads to the formation of sp(3) or sp(2) rich carbon film depending on the carbon ion energy and the deposition temperature. Higher energy (150 eV) C- ion beams and lower deposition temperatures (room temperature) produce sp(3) rich carbon films. At 150 eV ion energy, the transition temperature from sp(3) to sp(2) rich carbon film during deposition is about 150 degrees C. Lower energy (< 50 eV) C- ion beams at room temperature produce sp(2) rich carbon films. During postdeposition annealing, the sp(3) rich carbon film deposited at room temperature was converted to an sp(2) rich carbon film above 740 degrees C. (C) 1997 American Vacuum Society.
引用
收藏
页码:2750 / 2754
页数:5
相关论文
共 50 条
  • [41] A novel rectilinear negative carbon ion beam source for large-area amorphous diamond like carbon coatings
    Sohn, MH
    Ahn, YO
    Ko, YW
    Park, Y
    Kim, SI
    ION-SOLID INTERACTIONS FOR MATERIALS MODIFICATION AND PROCESSING, 1996, 396 : 629 - 634
  • [42] Growth and characteristics of diamond-like carbon (DLC) films deposited by direct negative carbon ion beam deposition
    Kim, Daeil
    Jang, H. S.
    Kim, Y. S.
    Choi, D. H.
    Choi, B. K.
    Lee, J. H.
    You, Y. Z.
    Chun, H. G.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 254 (01): : 93 - 97
  • [43] Ion beam analyses of carbon nanotubes
    Naab, FU
    Holland, OW
    Duggan, JL
    McDaniel, FD
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (04): : 1415 - 1419
  • [44] Ion beam modification of carbon materials
    Iwaki, M
    PARTICLE BEAMS & PLASMA INTERACTION ON MATERIALS AND ION & PLASMA SURFACE FINISHING 2004, 2005, 107 : 107 - 110
  • [45] Characteristics of a direct negative carbon ion beam source and AFM observations of DLC film
    Kim, D
    Kim, S
    SURFACE & COATINGS TECHNOLOGY, 2002, 157 (01): : 66 - 71
  • [46] Carbon nitride film formation by low energy positive and negative ion beam deposition
    Tsubouchi, N
    Horino, Y
    Enders, B
    Chayahara, A
    Kinomura, A
    Fujii, K
    MATERIALS MODIFICATION AND SYNTHESIS BY ION BEAM PROCESSING, 1997, 438 : 605 - 610
  • [47] Energetics of substitutional carbon in hydrogenated Si(100)
    Sonnet, P
    Selloni, A
    Stauffer, L
    De Vita, A
    Car, R
    PHYSICAL REVIEW B, 2002, 65 (08) : 1 - 6
  • [48] The oriented growth of carbon nanotubes on Si (100)
    Rotkina, L
    Shah, S
    Choi, H
    Lyding, JW
    ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES, 2001, 591 : 247 - 250
  • [49] Self-organized nanopatterning of Si (100) surface using ion beam irradiation
    Vandana
    Kumar, Tanuj
    Jyoti
    Tomar, Amit
    Sulania, Indra
    Kanjilal, D.
    Kumar, Shyam
    NATIONAL CONFERENCE ON RECENT ADVANCES IN EXPERIMENTAL AND THEORETICAL PHYSICS (RAETP-2018), 2018, 2006
  • [50] Using Multiangle Scanning to Determine the Transversal Profile of a Carbon Ion Beam
    Grigorieva, A. A.
    Bulavskaya, A. A.
    Bushmina, E. A.
    Vorobiev, A. P.
    Vasilyeva, A. G.
    Miloichikova, I. A.
    Stuchebrov, S. G.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2023, 20 (05) : 1243 - 1245