Auto- and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses

被引:73
|
作者
Moreno-Bote, R [1 ]
Parga, N
机构
[1] NYU, Ctr Neural Sci, New York, NY 10003 USA
[2] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain
[3] Columbia Univ, Ctr Neurobiol & Behav, Ctr Theoret Neurosci, New York, NY 10032 USA
关键词
D O I
10.1103/PhysRevLett.96.028101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An analytical description of the response properties of simple but realistic neuron models in the presence of noise is still lacking. We determine completely up to the second order the firing statistics of a single and a pair of leaky integrate-and-fire neurons receiving some common slowly filtered white noise. In particular, the auto- and cross-correlation functions of the output spike trains of pairs of cells are obtained from an improvement of the adiabatic approximation introduced previously by Moreno-Bote and Parga [Phys. Rev. Lett. 92, 028102 (2004)]. These two functions define the firing variability and firing synchronization between neurons, and are of much importance for understanding neuron communication.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Rate dynamics of leaky integrate-and-fire neurons with strong synapses
    Nordlie, Eilen
    Tetzlaff, Tom
    Einevoll, Gaute T.
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2010, 4
  • [2] Purely Spintronic Leaky Integrate-and-Fire Neurons
    Brigner, Wesley H.
    Hassan, Naimul
    Hu, Xuan
    Bennett, Christopher H.
    Garcia-Sanchez, Felipe
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    Friedman, Joseph S.
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 1189 - 1193
  • [3] Robust sound onset detection using leaky integrate-and-fire neurons with depressing synapses
    Smith, LS
    Fraser, DS
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (05): : 1125 - 1134
  • [4] Correlated input spike trains and their effects on the response of the leaky integrate-and-fire neuron
    Kuhn, A
    Rotter, S
    Aertsen, A
    [J]. NEUROCOMPUTING, 2002, 44 : 121 - 126
  • [5] Spike train probability models for stimulus-driven leaky integrate-and-fire neurons
    Koyama, Shinsuke
    Kass, Robert E.
    [J]. NEURAL COMPUTATION, 2008, 20 (07) : 1776 - 1795
  • [6] A LEAKY INTEGRATE-AND-FIRE MODEL WITH ADAPTATION FOR THE GENERATION OF A SPIKE TRAIN
    Buonocore, Aniello
    Caputo, Luigia
    Pirozzi, Enrica
    Carfora, Maria Francesca
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2016, 13 (03) : 483 - 493
  • [7] Three Artificial Spintronic Leaky Integrate-and-Fire Neurons
    Brigner, Wesley H.
    Hu, Xuan
    Hassan, Naimul
    Jiang-Wei, Lucian
    Bennett, Christopher H.
    Garcia-Sanchez, Felipe
    Akinola, Otitoaleke
    Pasquale, Massimo
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    Friedman, Joseph S.
    [J]. SPIN, 2020, 10 (02)
  • [8] Learning spike-timings based representations of sensory stimuli with leaky integrate-and-fire neurons
    Michael Gutmann
    Aapo Hyvärinen
    [J]. BMC Neuroscience, 10 (Suppl 1)
  • [9] Spike synchronization in a network of silicon integrate-and-fire neurons
    Liu, SC
    Douglas, R
    [J]. 2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 5, PROCEEDINGS, 2004, : 397 - 400
  • [10] Balanced neurons: analysis of leaky integrate-and-fire neurons with reversal potentials
    Burkitt, AN
    [J]. BIOLOGICAL CYBERNETICS, 2001, 85 (04) : 247 - 255