PELL'S EQUATIONS IN GAUSSIAN INTEGERS

被引:0
|
作者
Kharbuki, Algracia [1 ]
Singh, Madan Mohan [2 ]
机构
[1] North Eastern Hill Univ, Dept Math, Shillong, Meghalaya, India
[2] North Eastern Hill Univ, Dept Basic Sci & Social Sci, Shillong, Meghalaya, India
关键词
complex continued fraction; Hurwitz continued fraction; recurrence relation; Pell's equation; Gaussian integers;
D O I
10.17654/NT042010015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From Hurwitz's approach of complex continued fractions, we build a complex theory of the Pell's equation. In this paper, we study the complex theory of the Pell's equation, x(2) - Dy-2 = 2, that is, finding its solutions in Gaussian integers, using Hurwitz complex continued fraction, hence, generalizing it to the Pell's equation x(2) - Dy-2 = 2(n) and in the process we also develop some interesting properties.
引用
收藏
页码:15 / 32
页数:18
相关论文
共 50 条
  • [21] A REMARK ON GAUSSIAN INTEGERS
    NIVEN, I
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 51 (11) : 876 - 876
  • [22] APPLICATION OF GAUSSIAN INTEGERS
    INKERI, K
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (06): : 496 - 497
  • [23] Simultaneous Pell Equations
    Sihabudin, N. A.
    Sapar, S. H.
    Johari, M. A. M.
    ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 1750
  • [24] Simultaneous Pell equations
    Anglin, WS
    MATHEMATICS OF COMPUTATION, 1996, 65 (213) : 355 - 359
  • [25] A Combinatorial Proof of Simplified Kollar's Theorem on Pell's Equations
    Chilikov, A. A.
    Efremov, I.
    Zveryk, V.
    Khomich, N.
    MATHEMATICAL NOTES, 2020, 107 (5-6) : 867 - 871
  • [26] A note on Gaussian Modified Pell numbers
    Catarino, Paula
    Campos, Helena
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2018, 39 (06): : 1363 - 1371
  • [27] Generalized Pell's equations and Weber's class number problem
    Yoshizaki, Hyuga
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (02): : 373 - 391
  • [28] Principal Primitive Ideals in Quadratic Orders and Pell's Equations
    Issa, Ahmad
    Sankari, Hasan
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [29] ON THE SOLUTIONS OF THE PELL-TYPE EQUATION x2 - ry2 = r IN THE RING OF GAUSSIAN INTEGERS Z[i] WITH r A GAUSSIAN PRIME
    Diaz-Vargas, Javier
    Hernandez-Ketchul, Myriam
    Jacob Rubio-Barrios, Carlos
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2021, 50 (01): : 19 - 43
  • [30] Gaussian Pell-Lucas Polynomials
    Yagmur, Tulay
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (04): : 673 - 679