Principal Primitive Ideals in Quadratic Orders and Pell's Equations

被引:0
|
作者
Issa, Ahmad [1 ]
Sankari, Hasan [1 ]
机构
[1] Tishreen Univ, Dept Math, Latakia, Syria
关键词
MAXIMAL REAL SUBFIELD; CLASS-NUMBER;
D O I
10.1155/2021/3124437
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a method of determining whether the primitive ideal is principal in a real quadratic order, depending on the solvability of Pell's equation.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] INDEFINITE QUADRATIC FORMS AND PELL EQUATIONS INVOLVING QUADRATIC IDEALS
    Tekcan, Ahmet
    MATHEMATICAL REPORTS, 2017, 19 (02): : 263 - 279
  • [2] ON CONDUCTOR IDEALS OF QUADRATIC ORDERS
    Almas, S.
    Rehman, S. U.
    Younus, S.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 14 (02): : 243 - 252
  • [3] GENERALIZED CONTINUED FRACTIONS IN REAL QUADRATIC FIELDS AND PELL'S EQUATIONS
    Bracher, M.
    Hetz, S.
    Levitt, B.
    Ontiveros, M.
    Sewell, A.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2011, 22 (02): : 211 - 223
  • [4] Quadratic Integral Solutions to Double Pell Equations
    Veneziano, Francesco
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2011, 126 : 47 - 61
  • [5] The lattice of primary ideals of orders in quadratic number fields
    Peruginelli, Giulio
    Zanardo, Paolo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (07) : 2025 - 2040
  • [7] Quadratic Diophantine equations and orders in quaternion algebras
    Shimura, G
    AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (02) : 481 - 518
  • [8] Primitive solutions of nonscalar quadratic Diophantine equations
    Murata, Manabu
    JOURNAL OF NUMBER THEORY, 2019, 201 : 398 - 435
  • [9] Quadratic Ideals, Indefinite Quadratic Forms and Some Specific Diophantine Equations
    Tekcan, Ahmet
    Kutlu, Seyma
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (03): : 173 - 192
  • [10] Pell Equations: Non-Principal Lagrange Criteria and Central Norms
    Mollin, R. A.
    Srinivasan, A.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (04): : 774 - 782