Nonlinear Spectral Unmixing of Hyperspectral Images Using Gaussian Processes

被引:56
|
作者
Altmann, Yoann [1 ]
Dobigeon, Nicolas [1 ]
McLaughlin, Steve [2 ]
Tourneret, Jean-Yves [1 ]
机构
[1] Univ Toulouse, IRIT ENSEEIHT, F-31071 Toulouse, France
[2] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Gaussian processes; hyperspectral imaging; spectral unmixing; MIXTURE ANALYSIS; COMPONENT ANALYSIS; QUANTIFICATION; EXTRACTION;
D O I
10.1109/TSP.2013.2245127
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an unsupervised algorithm for nonlinear unmixing of hyperspectral images. The proposed model assumes that the pixel reflectances result from a nonlinear function of the abundance vectors associated with the pure spectral components. We assume that the spectral signatures of the pure components and the nonlinear function are unknown. The first step of the proposed method estimates the abundance vectors for all the image pixels using a Bayesian approach an a Gaussian process latent variable model for the nonlinear function (relating the abundance vectors to the observations). The endmembers are subsequently estimated using Gaussian process regression. The performance of the unmixing strategy is first evaluated on synthetic data. The proposed method provides accurate abundance and endmember estimations when compared to other linear and nonlinear unmixing strategies. An interesting property is its robustness to the absence of pure pixels in the image. The analysis of a real hyperspectral image shows results that are in good agreement with state of the art unmixing strategies and with a recent classification method.
引用
收藏
页码:2442 / 2453
页数:12
相关论文
共 50 条
  • [41] Compressed Sensing Reconstruction of Hyperspectral Images Based on Spectral Unmixing
    Wang, Li
    Feng, Yan
    Gao, Yanlong
    Wang, Zhongliang
    He, Mingyi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (04) : 1266 - 1284
  • [42] Multi-objective based spectral unmixing for hyperspectral images
    Xu, Xia
    Shi, Zhenwei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 124 : 54 - 69
  • [43] Spectral unmixing of hyperspectral images based on block sparse structure
    Azarang, Seyed Hossein Mosavi
    Rajabi, Roozbeh
    Zayyani, Hadi
    Zehtabian, Amin
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (01) : 16510
  • [44] EELS hyperspectral images unmixing using autoencoders
    Brun, Nathalie
    Lambert, Guillaume
    Bocher, Laura
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2024, 99
  • [45] Spatial-Spectral Multiscale Sparse Unmixing for Hyperspectral Images
    Ince, Taner
    Dobigeon, Nicolas
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20 : 1 - 5
  • [46] Joint Anomaly Detection and Spectral Unmixing for Planetary Hyperspectral Images
    Nakhostin, Sina
    Clenet, Harold
    Corpetti, Thomas
    Courty, Nicolas
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12): : 6879 - 6894
  • [47] Spectral Unmixing for the Classification of Hyperspectral Images at a Finer Spatial Resolution
    Villa, Alberto
    Chanussot, Jocelyn
    Benediktsson, Jon Atli
    Jutten, Christian
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) : 521 - 533
  • [48] AUGMENTED GAUSSIAN LINEAR MIXTURE MODEL FOR SPECTRAL VARIABILITY IN HYPERSPECTRAL UNMIXING
    Salehani, Yaser Esmaeili
    Arabnejad, Ehsan
    Gazor, Saeed
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1880 - 1884
  • [49] Online Unmixing of Multitemporal Hyperspectral Images Accounting for Spectral Variability
    Thouvenin, Pierre-Antoine
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (09) : 3979 - 3990
  • [50] A New Algorithm for Bilinear Spectral Unmixing of Hyperspectral Images Using Particle Swarm Optimization
    Luo, Wenfei
    Gao, Lianru
    Plaza, Antonio
    Marinoni, Andrea
    Yang, Bin
    Zhong, Liang
    Gamba, Paolo
    Zhang, Bing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (12) : 5776 - 5790