Nonlinear Spectral Unmixing of Hyperspectral Images Using Gaussian Processes

被引:56
|
作者
Altmann, Yoann [1 ]
Dobigeon, Nicolas [1 ]
McLaughlin, Steve [2 ]
Tourneret, Jean-Yves [1 ]
机构
[1] Univ Toulouse, IRIT ENSEEIHT, F-31071 Toulouse, France
[2] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Gaussian processes; hyperspectral imaging; spectral unmixing; MIXTURE ANALYSIS; COMPONENT ANALYSIS; QUANTIFICATION; EXTRACTION;
D O I
10.1109/TSP.2013.2245127
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an unsupervised algorithm for nonlinear unmixing of hyperspectral images. The proposed model assumes that the pixel reflectances result from a nonlinear function of the abundance vectors associated with the pure spectral components. We assume that the spectral signatures of the pure components and the nonlinear function are unknown. The first step of the proposed method estimates the abundance vectors for all the image pixels using a Bayesian approach an a Gaussian process latent variable model for the nonlinear function (relating the abundance vectors to the observations). The endmembers are subsequently estimated using Gaussian process regression. The performance of the unmixing strategy is first evaluated on synthetic data. The proposed method provides accurate abundance and endmember estimations when compared to other linear and nonlinear unmixing strategies. An interesting property is its robustness to the absence of pure pixels in the image. The analysis of a real hyperspectral image shows results that are in good agreement with state of the art unmixing strategies and with a recent classification method.
引用
收藏
页码:2442 / 2453
页数:12
相关论文
共 50 条
  • [31] Target spectra guided spectral unmixing for hyperspectral images
    Yu, Yue
    Sun, Weidong
    Gaojishu Tongxin/Chinese High Technology Letters, 2012, 22 (03): : 240 - 248
  • [32] SUPERVISED NONLINEAR SPECTRAL UNMIXING USING A POLYNOMIAL POST NONLINEAR MODEL FOR HYPERSPECTRAL IMAGERY
    Altmann, Yoann
    Halimi, Abderrahim
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1009 - 1012
  • [33] LOSSY COMPRESSION OF HYPERSPECTRAL IMAGES OPTIMIZING SPECTRAL UNMIXING
    Karami, Azam
    Heylen, Rob
    Scheunders, Paul
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 5031 - 5034
  • [34] A NOVEL NONLINEAR UNMIXING SCHEME FOR HYPERSPECTRAL IMAGES USING THE NONLINEAR LEAST SQUARES TECHNIQUE
    Pu, Hanye
    Wang, Bin
    Jiang, Geng-Ming
    Zhang, Jian Qiu
    Hu, Bo
    Li, Dan
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2547 - 2550
  • [35] Sparse Linear Spectral Unmixing of Hyperspectral Images Using Expectation-Propagation
    Li, Zeng
    Altmann, Yoann
    Chen, Jie
    Mclaughlin, Stephen
    Rahardja, Susanto
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [36] A POST NONLINEAR MIXING MODEL FOR HYPERSPECTRAL IMAGES UNMIXING
    Altmann, Yoann
    Halimi, Abderrahim
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1882 - 1885
  • [37] BAYESIAN UNSUPERVISED UNMIXING OF HYPERSPECTRAL IMAGES USING A POST-NONLINEAR MODEL
    Altmann, Yoann
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
  • [38] Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery
    Altmann, Yoann
    Halimi, Abderrahim
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (06) : 3017 - 3025
  • [39] SUPERVISED NONLINEAR UNMIXING OF HYPERSPECTRAL IMAGES USING A PRE-IMAGE METHODS
    Nguyen, N. H.
    Chen, J.
    Richard, C.
    Honeine, P.
    Theys, C.
    NEW CONCEPTS IN IMAGING: OPTICAL AND STATISTICAL MODELS, 2013, 59 : 417 - 437
  • [40] Hyperspectral Recovery from RGB Images using Gaussian Processes
    Akhtar, Naveed
    Mian, Ajmal
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (01) : 100 - 113