Intrinsic Correlation between Electronic Structure and Degradation: From Few-Layer to Bulk Black Phosphorus

被引:25
|
作者
Kim, Minju [1 ]
Kim, Han-gyu [1 ]
Park, Soohyung [2 ,3 ]
Kim, Jin Sung [1 ]
Choi, Hyoung Joon [1 ]
Im, Seongil [1 ]
Lee, Hyunbok [4 ]
Kim, Taekyeong [5 ]
Yi, Yeonjin [1 ]
机构
[1] Yonsei Univ, Inst Phys & Appl Phys, 50 Yonsei Ro, Seoul, South Korea
[2] Humboldt Univ, Inst Phys, Brook Taylor Str 6, Berlin, Germany
[3] Humboldt Univ, IRIS Adlershof, Brook Taylor Str 6, Berlin, Germany
[4] Kangwon Natl Univ, Dept Phys, 1 Gangwondaehak Gil, Chuncheon Si, Gangwon Do, South Korea
[5] Hankuk Univ Foreign Studies, Dept Phys, 81 Oedae Ro, Yongin, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
black phosphorus; degradation; Marcus-Gerischer theory; oxidation model; work function; TRANSISTORS; PASSIVATION; REDUCTION;
D O I
10.1002/anie.201811743
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Black phosphorus (BP) has received much attention owing to its fascinating properties, such as a high carrier mobility and tunable band gap. However, these advantages have been overshadowed by the fast degradation of BP under ambient conditions. To overcome this obstacle, the exact degradation mechanisms need to be unveiled. Herein, we analyzed two sequential degradation processes and the layer-dependent degradation rates of BP in the dark by scanning Kelvin probe microscopy (SKPM) measurements and theoretical modeling. The layer-dependent degradation was successfully interpreted by considering the oxidation model based on the Marcus-Gerischer theory (MGT). In the dark, the electron transfer rate from BP to oxygen molecules depends on the number of layers as these systems have different carrier concentrations. This work not only provides a deeper understanding of the degradation mechanism itself but also suggest new strategies for the design of stable BP-based electronics.
引用
收藏
页码:3754 / 3758
页数:5
相关论文
共 50 条
  • [21] Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus
    Cakir, Deniz
    Sevik, Cem
    Peeters, Francois M.
    PHYSICAL REVIEW B, 2015, 92 (16)
  • [22] Inkjet Printing of Few-Layer Enriched Black Phosphorus Nanosheets for Electronic Devices
    Jun, Ho Young
    Ryu, Sang Ouk
    Kim, Se Hyun
    Kim, Jun Young
    Chang, Chih-Hung
    Ryu, Si Ok
    Choi, Chang-Ho
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (10)
  • [23] An ultrahigh pressure homogenization technique for easily exfoliating few-layer phosphorene from bulk black phosphorus
    Guan, Qing-Qing
    Zhou, Hua-Jing
    Ning, Ping
    Lian, Pei-Chao
    Wang, Bo
    He, Liang
    Chai, Xin-Sheng
    PHYSICA B-CONDENSED MATTER, 2018, 537 : 18 - 22
  • [24] Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus
    Tao, Jin
    Shen, Wanfu
    Wu, Sen
    Liu, Lu
    Feng, Zhihong
    Wang, Chao
    Hu, Chunguang
    Yao, Pei
    Zhang, Hao
    Pang, Wei
    Duan, Xuexin
    Liu, Jing
    Zhou, Chongwu
    Zhang, Daihua
    ACS NANO, 2015, 9 (11) : 11362 - 11370
  • [25] Light-Induced Ambient Degradation of Few-Layer Black Phosphorus: Mechanism and Protection
    Zhou, Qionghua
    Chen, Qian
    Tong, Yilong
    Wang, Jinlan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (38) : 11437 - 11441
  • [26] Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus
    Wu, Jing
    Koon, Gavin Kok Wai
    Xiang, Du
    Han, Cheng
    Toh, Chee Tat
    Kulkarni, Eeshan S.
    Verzhbitskiy, Ivan
    Carvalho, Alexandra
    Rodin, Aleksandr S.
    Koenig, Steven P.
    Eda, Goki
    Chen, Wei
    Castro Neto, A. H.
    Oezyilmaz, Barbaros
    ACS NANO, 2015, 9 (08) : 8070 - 8077
  • [27] dc and ac transport in few-layer black phosphorus
    Tahir, M.
    Krstajic, P. M.
    Vasilopoulos, P.
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (04)
  • [28] Ambipolar quantum transport in few-layer black phosphorus
    Long, Gen
    Maryenko, Denis
    Pezzini, Sergio
    Xu, Shuigang
    Wu, Zefei
    Han, Tianyi
    Lin, Jiangxiazi
    Cheng, Chun
    Cai, Yuan
    Zeitler, Uli
    Wang, Ning
    PHYSICAL REVIEW B, 2017, 96 (15)
  • [29] Signatures of subband excitons in few-layer black phosphorus
    Chaves, A.
    Sousa, G. O.
    Khaliji, K.
    da Costa, D. R.
    Farias, G. A.
    Low, Tony
    PHYSICAL REVIEW B, 2021, 103 (16)
  • [30] Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection
    Wang, Jinlan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254