Processing Class-Constraint K-NN Queries with MISP

被引:0
|
作者
Milchevski, Evica [1 ]
Neffgen, Fabian [1 ]
Michel, Sebastian [1 ]
机构
[1] TU Kaiserslautern, Kaiserslautern, Germany
关键词
D O I
10.1145/3201463.3201466
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we consider processing k-nearest-neighbor (k-NN) queries, with the additional requirement that the result objects are of a speci fi c type. To solve this problem, we propose an approach based on a combination of an inverted index and state-of-the-art similarity search index structure for e ffi ciently pruning the search space early-on. Furthermore, we provide a cost model, and an extensive experimental study, that analyzes the performance of the proposed index structure under di ff erent con fi gurations, with the aim of fi nding the most e ffi cient one for the dataset being searched. ACM Reference Format: Evica Milchevski, Fabian Ne ff gen, and Sebastian Michel. 2018. Processing Class-Constraint K-NN Queries with MISP. InWebDB ' 18: 21st International Workshop on theWeb and Databases, June 10, 2018, Houston, TX, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3201463.3201466
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Evidential k-NN for Link Prediction
    Mallek, Sabrine
    Boukhris, Imen
    Elouedi, Zied
    Lefevre, Eric
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2017, 2017, 10369 : 201 - 211
  • [42] Anonymizing k-NN Classification on MapReduce
    Bazai, Sibghat Ullah
    Jang-Jaccard, Julian
    Wang, Ruili
    [J]. MOBILE NETWORKS AND MANAGEMENT (MONAMI 2017), 2018, 235 : 364 - 377
  • [43] Symmetrized Multivariate k-NN Estimators
    Fan, Yanqin
    Liu, Ruixuan
    [J]. ECONOMETRIC REVIEWS, 2015, 34 (6-10) : 827 - 847
  • [44] Learned k-NN Distance Estimation
    Amagata, Daichi
    Arai, Yusuke
    Fujita, Sumio
    Hara, Takahiro
    [J]. 30TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2022, 2022, : 1 - 4
  • [45] An Index Structure for Efficient k-NN Query Processing in Location Based Services
    Park, Yonghun
    Park, Hyoungsoon
    Seo, Dongmin
    Yoo, Jaesoo
    [J]. PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION TECHNOLOGIES & APPLICATIONS (ICUT 2009), 2009, : 165 - +
  • [46] An Analysis of Order Dependence in k-NN
    McSherry, David
    Stretch, Christopher
    [J]. ARTIFICIAL INTELLIGENCE AND COGNITIVE SCIENCE, 2010, 6206 : 207 - 218
  • [47] Efficient K-NN for Playlist Continuation
    Kelen, Domokos M.
    Berecz, Daniel
    Beres, Ferenc
    Benczur, Andras A.
    [J]. RECSYS CHALLENGE'18: PROCEEDINGS OF THE ACM RECOMMENDER SYSTEMS CHALLENGE 2018, 2018,
  • [48] Deep k-NN for Noisy Labels
    Bahri, Dara
    Jiang, Heinrich
    Gupta, Maya
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [49] A FUZZY VERSION OF THE K-NN METHOD
    KISSIOV, VT
    HADJITODOROV, ST
    [J]. FUZZY SETS AND SYSTEMS, 1992, 49 (03) : 323 - 329
  • [50] A multi-resolution surface distance model for k-NN query processing
    Deng, Ke
    Zhou, Xiaofang
    Shen, Heng Tao
    Liu, Qing
    Xu, Kai
    Lin, Xuemin
    [J]. VLDB JOURNAL, 2008, 17 (05): : 1101 - 1119