Symmetrized Multivariate k-NN Estimators

被引:4
|
作者
Fan, Yanqin [1 ]
Liu, Ruixuan [1 ]
机构
[1] Vanderbilt Univ, Dept Econ, Nashville, TN 37235 USA
关键词
C14; C13; C21; Conditional quantile process; Local oscillation of empirical processes; Conditional empirical process; Copula; NEAREST-NEIGHBOR ESTIMATION; NONPARAMETRIC-ESTIMATION; OSCILLATION BEHAVIOR; REGRESSION; DENSITY; KERNEL;
D O I
10.1080/07474938.2014.956590
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this article, we propose a symmetrized multivariate k-NN estimator for the conditional mean and for the conditional distribution function. We establish consistency and asymptotic normality of each estimator. For the estimator of the conditional distribution function, we also establish the weak convergence of the conditional empirical process to a Gaussian process. Compared with the corresponding kernel estimators, the asymptotic distributions of our k-NN estimators do not depend on the existence of the marginal probability density functions of the covariate vector. A small simulation study compares the finite sample performance of our symmetrized multivariate k-NN estimator with the Nadaraya-Watson kernel estimator for the conditional mean.
引用
收藏
页码:827 / 847
页数:21
相关论文
共 50 条
  • [1] MULTIVARIATE DATA-DRIVEN K-NN FUNCTION ESTIMATION
    BHATTACHARYA, PK
    MACK, YP
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 35 (01) : 1 - 11
  • [2] Design-based diagnostics for k-NN estimators of forest resources
    Baffetta, F.
    Corona, P.
    Fattorini, L.
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 2011, 41 (01): : 59 - 72
  • [3] WEAK-CONVERGENCE OF K-NN DENSITY AND REGRESSION-ESTIMATORS WITH VARYING K AND APPLICATIONS
    BHATTACHARYA, PK
    MACK, YP
    [J]. ANNALS OF STATISTICS, 1987, 15 (03): : 976 - 994
  • [4] On k-NN method with preprocessing
    University of Information Technology and Management, H. Sucharskiego 2, 35-225 Rzeszow, Poland
    不详
    [J]. Fundam Inf, 2006, 3 (343-358):
  • [5] On the Merge of k-NN Graph
    Zhao, Wan-Lei
    Wang, Hui
    Lin, Peng-Cheng
    Ngo, Chong-Wah
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (06) : 1496 - 1510
  • [6] Improving the space cost of k-NN search in metric spaces by using distance estimators
    Bustos, Benjamin
    Navarro, Gonzalo
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2009, 41 (02) : 215 - 233
  • [7] Fuzzy k-NN SVM
    Cheng, Hui-Chuan
    Yang, Chan-Yun
    Jan, Gene Eu
    Chen, Angela Shin-yih
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 1227 - 1232
  • [8] Improving the space cost of k-NN search in metric spaces by using distance estimators
    Benjamin Bustos
    Gonzalo Navarro
    [J]. Multimedia Tools and Applications, 2009, 41 : 215 - 233
  • [9] Trajectory Clustering and k-NN for Robust Privacy Preserving k-NN Query Processing in GeoSpark
    Dritsas, Elias
    Kanavos, Andreas
    Trigka, Maria
    Vonitsanos, Gerasimos
    Sioutas, Spyros
    Tsakalidis, Athanasios
    [J]. ALGORITHMS, 2020, 13 (08)
  • [10] Moderating k-NN Classifiers
    Fuad M. Alkoot
    Josef Kittler
    [J]. Pattern Analysis & Applications, 2002, 5 : 326 - 332