On-line list coloring of matroids

被引:0
|
作者
Lason, Michal [1 ,2 ]
Lubawski, Wojciech [2 ]
机构
[1] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[2] Jagiellonian Univ, Fac Math & Comp Sci, Theoret Comp Sci Dept, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Matroid; On-line list coloring; Coloring game;
D O I
10.1016/j.dam.2016.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A coloring of a matroid is proper if elements of the same color form an independent set. A theorem of Seymour asserts that a k-colorable matroid is also colorable from any lists of size k. We prove an on-line version of this theorem. That is, a coloring from lists of size k of a k-colorable matroid is possible, even if appearances of colors in the lists are recovered color by color by an adversary, while our job is to assign a color immediately after it is recovered. (C) 2016 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:353 / 355
页数:3
相关论文
共 50 条
  • [21] Bounded families for the on-line t-relaxed coloring
    Capponi, A
    Pilotto, C
    INFORMATION PROCESSING LETTERS, 2005, 96 (04) : 141 - 145
  • [22] A new lower bound for the on-line coloring of intervals with bandwidth
    Mikos, Patryk
    THEORETICAL COMPUTER SCIENCE, 2018, 708 : 96 - 100
  • [23] On-line coloring of H-free bipartite graphs
    Broersma, H. J.
    Capponi, A.
    Paulusma, D.
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2006, 3998 : 284 - 295
  • [24] On-Line Edge-Coloring with a Fixed Number of Colors
    Monrad Favrholdt
    Nyhave Nielsen
    Algorithmica, 2003, 35 : 176 - 191
  • [25] On-line edge-coloring with a fixed number of colors
    Favrholdt, LM
    Nielsen, MN
    FST TCS 2000: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2000, 1974 : 106 - 116
  • [26] COLORING NUMBER AND ON-LINE RAMSEY THEORY FOR GRAPHS AND HYPERGRAPHS
    Kierstead, H. A.
    Konjevod, Goran
    COMBINATORICA, 2009, 29 (01) : 49 - 64
  • [27] On-line edge-coloring with a fixed number of colors
    Favrholdt, LM
    Nielsen, MN
    ALGORITHMICA, 2003, 35 (02) : 176 - 191
  • [28] On-line coloring of sparse random graphs and random trees
    Pittel, B
    Weishaar, RS
    JOURNAL OF ALGORITHMS, 1997, 23 (01) : 195 - 205
  • [29] Coloring number and on-line Ramsey theory for graphs and hypergraphs
    H. A. Kierstead
    Goran Konjevod
    Combinatorica, 2009, 29 : 49 - 64
  • [30] On-line list colouring of complete multipartite graphs
    Kim, Seog-Jin
    Kwon, Young Soo
    Liu, Daphne Der-Fen
    Zhu, Xuding
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):