Data-dependent PAC-Bayes priors via differential privacy

被引:0
|
作者
Dziugaite, Gintare Karolina [1 ]
Roy, Daniel M. [2 ]
机构
[1] Univ Cambridge, Element AI, Cambridge, England
[2] Univ Toronto, Vector Inst, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
BOUNDS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Probably Approximately Correct (PAC) Bayes framework (McAllester, 1999) can incorporate knowledge about the learning algorithm and (data) distribution through the use of distribution-dependent priors, yielding tighter generalization bounds on data-dependent posteriors. Using this flexibility, however, is difficult, especially when the data distribution is presumed to be unknown. We show how an e-differentially private data-dependent prior yields a valid PAC-Bayes bound, and then show how non-private mechanisms for choosing priors can also yield generalization bounds. As an application of this result, we show that a Gaussian prior mean chosen via stochastic gradient Langevin dynamics (SGLD; Welling and Teh, 2011) leads to a valid PAC-Bayes bound given control of the 2-Wasserstein distance to an epsilon-differentially private stationary distribution. We study our data-dependent bounds empirically, and show that they can be nonvacuous even when other distribution-dependent bounds are vacuous.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A Bayesian Synthesis Approach to Data Fusion Using Data-Dependent Priors
    Marcoulides, Katerina M.
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2017, 52 (01) : 111 - 112
  • [22] Asymptotic inference for mixture models using data-dependent priors
    Wasserman, L
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 : 159 - 180
  • [23] Chromatic PAC-Bayes Bounds for Non-IID Data: Applications to Ranking and Stationary β-Mixing Processes
    Ralaivola, Liva
    Szafranski, Marie
    Stempfel, Guillaume
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 1927 - 1956
  • [24] Improving VAE Generations of Multimodal Data Through Data-Dependent Conditional Priors
    Lavda, Frantzeska
    Gregorova, Magda
    Kalousis, Alexandros
    [J]. ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1254 - 1261
  • [25] Highest posterior density regions with approximate frequentist validity: The role of data-dependent priors
    Chang, In Hong
    Mukerjee, Rahul
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (23-24) : 1791 - 1797
  • [26] Data-Dependent Hashing via Nonlinear Spectral Gaps
    Andoni, Alexandr
    Naor, Assaf
    Nikolov, Aleksandar
    Razenshteyn, Ilya
    Waingarten, Erik
    [J]. STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 787 - 800
  • [27] Dependent Differential Privacy for Correlated Data
    Zhao, Jun
    Zhang, Junshan
    Poor, H. Vincent
    [J]. 2017 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2017,
  • [28] Similarity Learning via Optimizing the Data-Dependent Kernel
    Xiong, Huilin
    Shi, Panfei
    [J]. 2009 INTERNATIONAL JOINT CONFERENCE ON BIOINFORMATICS, SYSTEMS BIOLOGY AND INTELLIGENT COMPUTING, PROCEEDINGS, 2009, : 512 - 516
  • [29] Data-dependent probability matching priors for likelihood ratio and adjusted likelihood ratio statistics
    Chang, In Hong
    Mukerjee, Rahul
    [J]. STATISTICS, 2013, 47 (02) : 294 - 305
  • [30] Nonparametric hierarchical Bayes analysis of binomial data via Bernstein polynomial priors
    Zhang, Tingting
    Liu, Jun S.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2012, 40 (02): : 328 - 344