Supercategorification of quantum Kac-Moody algebras

被引:20
|
作者
Kang, Seok-Jin [1 ,2 ]
Kashiwara, Masaki [1 ,3 ]
Oh, Se-jin [4 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
[4] Pohang Univ Sci & Technol, Pohang Math Inst, Pohang 790784, South Korea
基金
日本学术振兴会;
关键词
Categorification; Quiver Hecke superalgebras; Cyclotomic quotients; Quantum Kac-Moody algebras; HECKE ALGEBRAS; CRYSTAL BASES;
D O I
10.1016/j.aim.2013.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the quiver Hecke superalgebras and their cyclotomic quotients provide a supercategorification of quantum Kac-Moody algebras and their integrable highest weight modules. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:116 / 162
页数:47
相关论文
共 50 条
  • [11] On the structure of Kac-Moody algebras
    Marquis, Timothee
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (04): : 1124 - 1152
  • [12] Quantizations of Kac-Moody algebras
    Kharchenko, V. K.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (04) : 666 - 683
  • [13] A generalization of Kac-Moody algebras
    Harada, K
    Miyamoto, M
    Yamada, H
    GROUPS, DIFFERENCE SETS, AND THE MONSTER, 1996, 4 : 377 - 408
  • [14] Crystal bases for quantum generalized Kac-Moody algebras
    Jeong, K
    Kang, SJ
    Kashiwara, M
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 90 : 395 - 438
  • [15] HIDDEN QUANTUM GROUPS INSIDE KAC-MOODY ALGEBRAS
    ALEKSEEV, A
    FADDEEV, L
    SEMENOVTIANSHANSKY, M
    LECTURE NOTES IN MATHEMATICS, 1992, 1510 : 148 - 158
  • [16] Abstract Crystals for Quantum Generalized Kac-Moody Algebras
    Jeong, Kyeonghoon
    Kang, Seok-Jin
    Kashiwara, Masaki
    Shin, Dong-Uy
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [17] Majid conjecture: quantum Kac-Moody algebras version
    Hu, Hongmei
    Hu, Naihong
    Xia, Limeng
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (03) : 727 - 747
  • [18] Canonical bases for quantum generalized Kac-Moody algebras
    Kang, SJ
    Schiffmann, O
    ADVANCES IN MATHEMATICS, 2006, 200 (02) : 455 - 478
  • [19] GENERALIZED KAC-MOODY ALGEBRAS
    BORCHERDS, R
    JOURNAL OF ALGEBRA, 1988, 115 (02) : 501 - 512
  • [20] Quantizations of Kac-Moody Algebras
    Kharchenko, Vladislav
    QUANTUM LIE THEORY: A MULTILINEAR APPROACH, 2015, 2150 : 99 - 127