The Haar system in Besov-type spaces

被引:6
|
作者
Yuan, Wen [1 ]
Sickel, Winfried [2 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ China, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Friedrich Schiller Univ Jena, Math Inst, D-07743 Jena, Germany
基金
中国国家自然科学基金;
关键词
Besov space; Besov-type space; characteristic function; orthonormal Haar system; smooth wavelets; MORREY SPACES; MAXIMAL FUNCTIONS; INTERPOLATION; EQUATIONS; BASES; MULTIPLIERS;
D O I
10.4064/sm180828-9-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some Besov-type spaces B-p,q(s,tau)(R-n) can be characterized in terms of the behavior of the Fourier-Haar coefficients. In this article, the authors discuss some necessary restrictions on the parameters s, tau, p, q and n in order to have such a characterization. To do so, the authors measure the regularity of the characteristic function X of the unit cube in R-n via Besov-type spaces B-p,q(s,tau)(R-n). Furthermore, the authors study necessary and sufficient conditions for the operation < f,X > to generate a continuous linear functional on B-p,q(s,tau)(R-n).
引用
收藏
页码:129 / 162
页数:34
相关论文
共 50 条
  • [41] Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces
    DRIHEM Douadi
    ScienceChina(Mathematics), 2013, 56 (05) : 1073 - 1086
  • [42] Hausdorff Besov-type and Triebel-Lizorkin-type spaces and their applications
    Zhuo, Ciqiang
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) : 998 - 1018
  • [43] Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces
    Douadi Drihem
    Science China Mathematics, 2013, 56 : 1073 - 1086
  • [44] COMPLEX INTERPOLATION ON BESOV-TYPE AND TRIEBEL-LIZORKIN-TYPE SPACES
    Yang, Dachun
    Yuan, Wen
    Zhuo, Ciqiang
    ANALYSIS AND APPLICATIONS, 2013, 11 (05)
  • [45] Function spaces of Besov-type and Triebel-Lizorkin-type — a survey
    Da-chun Yang
    Wen Yuan
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 405 - 426
  • [46] Besov-Type Spaces Associated With Dunkl Wavelet Transform on R
    Verma, Randhir Kumar
    Prasad, Akhilesh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [47] Characterization of variable Besov-type spaces by ball means of differences
    Drihem, Douadi
    KYOTO JOURNAL OF MATHEMATICS, 2016, 56 (03) : 655 - 680
  • [48] A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces
    Liang, Yiyu
    Yang, Dachun
    Yuan, Wen
    Sawano, Yoshihiro
    Ullrich, Tino
    DISSERTATIONES MATHEMATICAE, 2013, (489) : 1 - 114
  • [49] Polynomial differentiation composition operators from Besov-type spaces into Bloch-type spaces
    Zhu, Xiangling
    Hu, Qinghua
    Qu, Dan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (01) : 147 - 168
  • [50] Relations among Besov-type spaces, TriebelLizorkin-type spaces and generalized Carleson measure spaces
    Yang, Dachun
    Yuan, Wen
    APPLICABLE ANALYSIS, 2013, 92 (03) : 549 - 561