The Haar system in Besov-type spaces

被引:5
|
作者
Yuan, Wen [1 ]
Sickel, Winfried [2 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ China, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Friedrich Schiller Univ Jena, Math Inst, D-07743 Jena, Germany
基金
中国国家自然科学基金;
关键词
Besov space; Besov-type space; characteristic function; orthonormal Haar system; smooth wavelets; MORREY SPACES; MAXIMAL FUNCTIONS; INTERPOLATION; EQUATIONS; BASES; MULTIPLIERS;
D O I
10.4064/sm180828-9-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some Besov-type spaces B-p,q(s,tau)(R-n) can be characterized in terms of the behavior of the Fourier-Haar coefficients. In this article, the authors discuss some necessary restrictions on the parameters s, tau, p, q and n in order to have such a characterization. To do so, the authors measure the regularity of the characteristic function X of the unit cube in R-n via Besov-type spaces B-p,q(s,tau)(R-n). Furthermore, the authors study necessary and sufficient conditions for the operation < f,X > to generate a continuous linear functional on B-p,q(s,tau)(R-n).
引用
收藏
页码:129 / 162
页数:34
相关论文
共 50 条
  • [21] Generalized Besov-type and Triebel-Lizorkin-type spaces
    Haroske, Dorothee D.
    Liu, Zhen
    STUDIA MATHEMATICA, 2023, 273 (02) : 161 - 199
  • [22] Invertibility of Frame Operators on Besov-Type Decomposition Spaces
    Romero, Jose Luis
    van Velthoven, Jordy Timo
    Voigtlaender, Felix
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (05)
  • [23] Multipliers and Closures of Besov-Type Spaces in the Bloch Space
    Li, Dongxia
    Yang, Liu
    FILOMAT, 2021, 35 (02) : 645 - 655
  • [24] INNER FUNCTIONS IN THE MOBIUS INVARIANT BESOV-TYPE SPACES
    Perez-Gonzalez, Fernando
    Rattya, Jouni
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2009, 52 : 751 - 770
  • [25] Besov-type spaces for the Dunkl operator on the real line
    Kamoun, Lotfi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 199 (01) : 56 - 67
  • [26] Invertibility of Frame Operators on Besov-Type Decomposition Spaces
    José Luis Romero
    Jordy Timo van Velthoven
    Felix Voigtlaender
    The Journal of Geometric Analysis, 2022, 32
  • [27] Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees
    Koskela, Pekka
    Wang, Zhuang
    POTENTIAL ANALYSIS, 2020, 53 (04) : 1317 - 1346
  • [28] Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees
    Pekka Koskela
    Zhuang Wang
    Potential Analysis, 2020, 53 : 1317 - 1346
  • [29] New applications of Besov-type and Triebel-Lizorkin-type spaces
    Sawano, Yoshihiro
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) : 73 - 85
  • [30] Besov-type spaces for the κ-Hankel wavelet transform on the real line
    Pathak, Ashish
    Pandey, Shrish
    CONCRETE OPERATORS, 2021, 8 (01): : 114 - 124