PLANAR BROWNIAN MOTION AND GAUSSIAN MULTIPLICATIVE CHAOS

被引:13
|
作者
Jego, Antoine [1 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
来源
ANNALS OF PROBABILITY | 2020年 / 48卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Brownian motion; local times; Gaussian multiplicative chaos; thick points; POINTS;
D O I
10.1214/19-AOP1399
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct the analogue of Gaussian multiplicative chaos measures for the local times of planar Brownian motion by exponentiating the square root of the local times of small circles. We also consider a flat measure supported on points whose local time is within a constant of the desired thickness level and show a simple relation between the two objects. Our results extend those of (Ann. Probab. 22 (1994) 566-625), and in particular, cover the entire L-1-phase or subcritical regime. These results allow us to obtain a nondegenerate limit for the appropriately rescaled size of thick points, thereby considerably refining estimates of (Acta Math. 186 (2001) 239-270).
引用
收藏
页码:1597 / 1643
页数:47
相关论文
共 50 条
  • [41] Microscopic chaos from brownian motion?
    C. P. Dettmann
    E. G. D. Cohen
    H. van Beijeren
    Nature, 1999, 401 : 875 - 875
  • [42] Chaos, dissipation and quantal Brownian motion
    Cohen, D
    NEW DIRECTIONS IN QUANTUM CHAOS, 2000, 143 : 65 - 99
  • [43] TRANSFORMATIONS OF GAUSSIAN PROCESSES TO BROWNIAN MOTION
    BHATTACH.PK
    ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06): : 2008 - &
  • [44] A UNIVERSALITY RESULT FOR SUBCRITICAL COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS
    Lacoin, Hubert
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (01): : 269 - 293
  • [45] Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation
    Duplantier, Bertrand
    Rhodes, Remi
    Sheffield, Scott
    Vargas, Vincent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (01) : 283 - 330
  • [46] Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation
    Bertrand Duplantier
    Rémi Rhodes
    Scott Sheffield
    Vincent Vargas
    Communications in Mathematical Physics, 2014, 330 : 283 - 330
  • [47] CRITICAL GAUSSIAN MULTIPLICATIVE CHAOS: CONVERGENCE OF THE DERIVATIVE MARTINGALE
    Duplantier, Bertrand
    Rhodes, Remi
    Sheffield, Scott
    Vargas, Vincent
    ANNALS OF PROBABILITY, 2014, 42 (05): : 1769 - 1808
  • [48] Lee-Yang Property and Gaussian Multiplicative Chaos
    Newman, Charles M.
    Wu, Wei
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 369 (01) : 153 - 170
  • [49] Negative moments for Gaussian multiplicative chaos on fractal sets
    Garban, Christophe
    Holden, Nina
    Sepulveda, Avelio
    Sun, Xin
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23 : 1 - 10
  • [50] Intersection exponents for planar Brownian motion
    Lawler, GF
    Werner, W
    ANNALS OF PROBABILITY, 1999, 27 (04): : 1601 - 1642