PLANAR BROWNIAN MOTION AND GAUSSIAN MULTIPLICATIVE CHAOS

被引:13
|
作者
Jego, Antoine [1 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
来源
ANNALS OF PROBABILITY | 2020年 / 48卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Brownian motion; local times; Gaussian multiplicative chaos; thick points; POINTS;
D O I
10.1214/19-AOP1399
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct the analogue of Gaussian multiplicative chaos measures for the local times of planar Brownian motion by exponentiating the square root of the local times of small circles. We also consider a flat measure supported on points whose local time is within a constant of the desired thickness level and show a simple relation between the two objects. Our results extend those of (Ann. Probab. 22 (1994) 566-625), and in particular, cover the entire L-1-phase or subcritical regime. These results allow us to obtain a nondegenerate limit for the appropriately rescaled size of thick points, thereby considerably refining estimates of (Acta Math. 186 (2001) 239-270).
引用
收藏
页码:1597 / 1643
页数:47
相关论文
共 50 条
  • [31] Gaussian Multiplicative Chaos for Symmetric Isotropic Matrices
    Chevillard, Laurent
    Rhodes, Remi
    Vargas, Vincent
    JOURNAL OF STATISTICAL PHYSICS, 2013, 150 (04) : 678 - 703
  • [32] Critical Gaussian multiplicative chaos for singular measures
    Lacoin, Hubert
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 175
  • [33] Random Hermitian matrices and Gaussian multiplicative chaos
    Berestycki, Nathanael
    Webb, Christian
    Wong, Mo Dick
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 172 (1-2) : 103 - 189
  • [34] Multiplicative linear search for a brownian target motion
    Mohamed, Abd El-Moneim Anwar
    Kassem, Mohamed Abd El-Hady
    El-Hadidy, Mohamed Abd Allah
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (09) : 4127 - 4139
  • [35] Microscopic chaos from brownian motion?
    P. Gaspard
    M. E. Briggs
    M. K. Francis
    J. V. Sengers
    R. W. Gammon
    J. R. Dorfman
    R. V. Calabrese
    Nature, 1999, 401 : 876 - 876
  • [36] The Brown measure of the free multiplicative Brownian motion
    Driver, Bruce K.
    Hall, Brian
    Kemp, Todd
    PROBABILITY THEORY AND RELATED FIELDS, 2022, 184 (1-2) : 209 - 273
  • [37] The role of chaos and resonances in Brownian motion
    Realpe, John
    Ordonez, Gonzalo
    CHAOS, NONLINEARITY, COMPLEXITY: THE DYNAMICAL PARADIGM OF NATURE, 2006, 206 : 179 - +
  • [38] The Brown measure of the free multiplicative Brownian motion
    Bruce K. Driver
    Brian Hall
    Todd Kemp
    Probability Theory and Related Fields, 2022, 184 : 209 - 273
  • [39] MODELING OF BROWNIAN MOTION BY SUMS OF MULTIPLICATIVE FUNCTIONS
    LYASHENK.NN
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1294 - 1295
  • [40] Microscopic chaos from brownian motion?
    Peter Grassberger
    Thomas Schreiber
    Nature, 1999, 401 : 875 - 876