Improving VG-RAM WNN Multi-label Text Categorization via Label Correlation

被引:1
|
作者
De Souza, Alberto F. [1 ]
Badue, Claudine [1 ]
Melotti, Bruno Zanetti [1 ]
Pedroni, Felipe T. [1 ]
Almeida, Fernando Libio L. [1 ]
机构
[1] Univ Fed Espirito Santo, BR-29075910 Vitoria, ES, Brazil
关键词
D O I
10.1109/ISDA.2008.298
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In multi-label text databases one or more labels, or categories, can be assigned to a single document. In many such databases there can be correlation on the assignment of subsets of the set of categories. This can be exploited to improve machine learning techniques devoted to multilabel text categorization. In this paper, we examine a Virtual Generalizing Random. Access Memory Weightless Neural Network (VG-RAM WNN for short) architecture that takes advantage of the correlation between categories to improve text-categorization performance. We compare the performance of this architecture, that we named Data Correlated VG-RAM WNN (VG-RAM WNN-COR), with that of standard VG-RAM WNN using four multi-label categorization performance metrics: one-error, ranking loss, average precision and hamming loss. Our experimental results show that VG-RAM WNN-COR has an overall better performance than VG-RAM WNN for the set of metrics considered.
引用
收藏
页码:437 / 442
页数:6
相关论文
共 50 条
  • [21] Label prompt for multi-label text classification
    Song, Rui
    Liu, Zelong
    Chen, Xingbing
    An, Haining
    Zhang, Zhiqi
    Wang, Xiaoguang
    Xu, Hao
    APPLIED INTELLIGENCE, 2023, 53 (08) : 8761 - 8775
  • [22] Label prompt for multi-label text classification
    Rui Song
    Zelong Liu
    Xingbing Chen
    Haining An
    Zhiqi Zhang
    Xiaoguang Wang
    Hao Xu
    Applied Intelligence, 2023, 53 : 8761 - 8775
  • [23] Improving VG-RAM neural networks performance using knowledge correlation
    Carneiro, Raphael V.
    Dias, Stiven S.
    Fardin, Dijalma, Jr.
    Oliveira, Hallysson
    Garcez, Artur S. d'Avila
    De Souza, Alberto F.
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2006, 4232 : 427 - 436
  • [24] Label Correlation Based Graph Convolutional Network for Multi-label Text Classification
    Huy-The Vu
    Minh-Tien Nguyen
    Van-Chien Nguyen
    Manh-Tran Tien
    Van-Hau Nguyen
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [25] Correlation Networks for Extreme Multi-label Text Classification
    Xun, Guangxu
    Jha, Kishlay
    Sun, Jianhui
    Zhang, Aidong
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1074 - 1082
  • [26] Improving Multi-label Classifiers via Label Reduction with Association Rules
    Charte, Francisco
    Rivera, Antonio
    Jose del Jesus, Maria
    Herrera, Francisco
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT II, 2012, 7209 : 188 - 199
  • [27] Improving the Performance of Multi-Label Classifiers via Label Space Reduction
    Moyano, Jose M.
    Luna, Jose M.
    Ventura, Sebastian
    2022 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2022), 2022, : 114 - 119
  • [28] Multi-Label Feature Selection Via Adaptive Label Correlation Estimation
    Zhang, Zan
    Zhang, Zhe
    Yao, Jialu
    Liu, Lin
    Li, Jiuyong
    Wu, Gongqing
    Wu, Xindong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (09)
  • [29] A Novel Method for Efficient Multi-Label Text Categorization of research articles
    Jindal, Rajni
    Shweta
    2018 INTERNATIONAL CONFERENCE ON COMPUTING, POWER AND COMMUNICATION TECHNOLOGIES (GUCON), 2018, : 326 - 329
  • [30] Minimizing Supervision in Multi-label Categorization
    Rajat
    Varshney, Munender
    Singh, Pravendra
    Namboodiri, Vinay P.
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 93 - 102