Correlation Networks for Extreme Multi-label Text Classification

被引:31
|
作者
Xun, Guangxu [1 ]
Jha, Kishlay [1 ]
Sun, Jianhui [1 ]
Zhang, Aidong [1 ]
机构
[1] Univ Virginia, Dept Comp Sci, Charlottesville, VA 22903 USA
基金
美国国家科学基金会;
关键词
multi-label text classification; deep learning; label correlation;
D O I
10.1145/3394486.3403151
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper develops the Correlation Networks (CorNet) architecture for the extreme multi-label text classification (XMTC) task, where the objective is to tag an input text sequence with the most relevant subset of labels from an extremely large label set. XMTC can be found in many real-world applications, such as document tagging and product annotation. Recently, deep learning models have achieved outstanding performances in XMTC tasks. However, these deep XMTC models ignore the useful correlation information among different labels. CorNet addresses this limitation by adding an extra CorNet module at the prediction layer of a deep model, which is able to learn label correlations, enhance raw label predictions with correlation knowledge and output augmented label predictions. We show that CorNet can be easily integrated with deep XMTC models and generalize effectively across different datasets. We further demonstrate that CorNet can bring significant improvements over the existing deep XMTC models in terms of both performance and convergence rate.
引用
收藏
页码:1074 / 1082
页数:9
相关论文
共 50 条
  • [1] TLC-XML: Transformer with Label Correlation for Extreme Multi-label Text Classification
    Zhao, Fei
    Ai, Qing
    Li, Xiangna
    Wang, Wenhui
    Gao, Qingyun
    Liu, Yichun
    [J]. NEURAL PROCESSING LETTERS, 2024, 56 (01)
  • [2] TLC-XML: Transformer with Label Correlation for Extreme Multi-label Text Classification
    Fei Zhao
    Qing Ai
    Xiangna Li
    Wenhui Wang
    Qingyun Gao
    Yichun Liu
    [J]. Neural Processing Letters, 56
  • [3] Deep Learning for Extreme Multi-label Text Classification
    Liu, Jingzhou
    Chang, Wei-Cheng
    Wu, Yuexin
    Yang, Yiming
    [J]. SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 115 - 124
  • [4] Taming Pretrained Transformers for Extreme Multi-label Text Classification
    Chang, Wei-Cheng
    Yu, Hsiang-Fu
    Zhong, Kai
    Yang, Yiming
    Dhillon, Inderjit S.
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3163 - 3171
  • [5] Multi-label Text Classification with Deep Neural Networks
    Chen, Yun
    Xiao, Bo
    Lin, Zhiqing
    Dai, Cheng
    Li, Zuochao
    Yang, Liping
    [J]. PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC), 2018, : 409 - 413
  • [6] Hierarchical Multi-label Classification of Text with Capsule Networks
    Aly, Rami
    Remus, Steffen
    Biemann, Chris
    [J]. 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019:): STUDENT RESEARCH WORKSHOP, 2019, : 323 - 330
  • [7] Multi-label text classification based on the label correlation mixture model
    He, Zhiyang
    Wu, Ji
    Lv, Ping
    [J]. INTELLIGENT DATA ANALYSIS, 2017, 21 (06) : 1371 - 1392
  • [8] MatchXML: An Efficient Text-Label Matching Framework for Extreme Multi-Label Text Classification
    Ye, Hui
    Sunderraman, Rajshekhar
    Ji, Shihao
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (09) : 4781 - 4793
  • [9] Multi-Label Text Classification Based on Contrastive and Correlation Learning
    Yang, Shuo
    Gao, Shu
    [J]. PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 325 - 330
  • [10] Correlation-Guided Representation for Multi-Label Text Classification
    Zhang, Qian-Wen
    Zhang, Ximing
    Yan, Zhao
    Liu, Ruifang
    Cao, Yunbo
    Zhang, Min-Ling
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3363 - 3369