Improving VG-RAM WNN Multi-label Text Categorization via Label Correlation

被引:1
|
作者
De Souza, Alberto F. [1 ]
Badue, Claudine [1 ]
Melotti, Bruno Zanetti [1 ]
Pedroni, Felipe T. [1 ]
Almeida, Fernando Libio L. [1 ]
机构
[1] Univ Fed Espirito Santo, BR-29075910 Vitoria, ES, Brazil
关键词
D O I
10.1109/ISDA.2008.298
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In multi-label text databases one or more labels, or categories, can be assigned to a single document. In many such databases there can be correlation on the assignment of subsets of the set of categories. This can be exploited to improve machine learning techniques devoted to multilabel text categorization. In this paper, we examine a Virtual Generalizing Random. Access Memory Weightless Neural Network (VG-RAM WNN for short) architecture that takes advantage of the correlation between categories to improve text-categorization performance. We compare the performance of this architecture, that we named Data Correlated VG-RAM WNN (VG-RAM WNN-COR), with that of standard VG-RAM WNN using four multi-label categorization performance metrics: one-error, ranking loss, average precision and hamming loss. Our experimental results show that VG-RAM WNN-COR has an overall better performance than VG-RAM WNN for the set of metrics considered.
引用
收藏
页码:437 / 442
页数:6
相关论文
共 50 条
  • [1] Automated multi-label text categorization with VG-RAM weightless neural networks
    De Souza, Alberto F.
    Pedroni, Felipe
    Oliveira, Elias
    Ciarelli, Patrick M.
    Henrique, Wallace Favoreto
    Veronese, Lucas
    Badue, Claudine
    NEUROCOMPUTING, 2009, 72 (10-12) : 2209 - 2217
  • [2] LABEL CORRELATION MIXTURE MODEL FOR MULTI-LABEL TEXT CATEGORIZATION
    He, Zhiyang
    Wu, Ji
    Lv, Ping
    2014 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY SLT 2014, 2014, : 83 - 88
  • [3] Selection strategies for multi-label text categorization
    Montejo-Raez, Arturo
    Urena-Lopez, Luis Alfonso
    ADVANCES IN NATURAL LANGUAGE PROCESSING, PROCEEDINGS, 2006, 4139 : 585 - 592
  • [4] Boosting multi-label hierarchical text categorization
    Esuli, Andrea
    Fagni, Tiziano
    Sebastiani, Fabrizio
    INFORMATION RETRIEVAL, 2008, 11 (04): : 287 - 313
  • [5] Boosting multi-label hierarchical text categorization
    Andrea Esuli
    Tiziano Fagni
    Fabrizio Sebastiani
    Information Retrieval, 2008, 11 : 287 - 313
  • [6] Multi-label text classification via joint learning from label embedding and label correlation
    Liu, Huiting
    Chen, Geng
    Li, Peipei
    Zhao, Peng
    Wu, Xindong
    NEUROCOMPUTING, 2021, 460 : 385 - 398
  • [7] Multi-label Arabic text categorization: A benchmark and baseline comparison of multi-label learning algorithms
    Al-Salemi, Bassam
    Ayob, Masri
    Kendall, Graham
    Noah, Shahrul Azman Mohd
    INFORMATION PROCESSING & MANAGEMENT, 2019, 56 (01) : 212 - 227
  • [8] Text categorization for multi-label documents and many categories
    Popa, I. Sandu
    Zeitouni, K.
    Gardarin, G.
    Nakache, D.
    Metais, E.
    TWENTIETH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2007, : 421 - +
  • [9] Multi-label Classification with Clustering for Image and Text Categorization
    Nasierding, Gulisong
    Sajjanhar, Atul
    2013 6TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), VOLS 1-3, 2013, : 869 - 874
  • [10] INDUCTION IN HIERARCHICAL MULTI-LABEL TEXT CATEGORIZATION DOMAINS
    Dendamrongvit, Sareewan
    Kubat, Miroslav
    EIGHTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING APPLIED IN COMPUTER AND ECONOMIC ENVIRONMENTS, 2010, : 49 - 54