Multi-label Classification with Clustering for Image and Text Categorization

被引:0
|
作者
Nasierding, Gulisong [1 ]
Sajjanhar, Atul [2 ]
机构
[1] Xinjiang Normal Univ, Sch Comp Sci & Technol, 102 Xin Yi Rd, Urumqi 830001, Peoples R China
[2] Deakin Univ, Sch Informat Technol, Parallel & Distributed Comp Lab, Burwood, Vic 3125, Australia
关键词
multi-label classification; clustering; image and text categorization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper explores effective multi-label classification methods for multi-semantic image and text categorization. We perform an experimental study of clustering based multi-label classification (CBMLC) for the target problem. Experimental evaluation is conducted for identifying the impact of different clustering algorithms and base classifiers on the predictive performance and efficiency of CBMLC. In the experimental setting, three widely used clustering algorithms and six popular multi-label classification algorithms are used and evaluated on multi-label image and text datasets. A multi-label classification evaluation metrics, micro F1-measure, is used for presenting predictive performances of the classifications. Experimental evaluation results reveal that clustering based multi-label learning algorithms are more effective compared to their non-clustering counterparts.
引用
收藏
页码:869 / 874
页数:6
相关论文
共 50 条
  • [1] Research on Multi-Classification and Multi-Label in Text Categorization
    Hua, Liu
    [J]. 2009 INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS, VOL 2, PROCEEDINGS, 2009, : 86 - 89
  • [2] Image to Text Translation by Multi-Label Classification
    Nasierding, Gulisong
    Kouzani, Abbas Z.
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2010, 6216 : 247 - +
  • [3] Selection strategies for multi-label text categorization
    Montejo-Raez, Arturo
    Urena-Lopez, Luis Alfonso
    [J]. ADVANCES IN NATURAL LANGUAGE PROCESSING, PROCEEDINGS, 2006, 4139 : 585 - 592
  • [4] Boosting multi-label hierarchical text categorization
    Esuli, Andrea
    Fagni, Tiziano
    Sebastiani, Fabrizio
    [J]. INFORMATION RETRIEVAL, 2008, 11 (04): : 287 - 313
  • [5] Boosting multi-label hierarchical text categorization
    Andrea Esuli
    Tiziano Fagni
    Fabrizio Sebastiani
    [J]. Information Retrieval, 2008, 11 : 287 - 313
  • [6] LABEL CORRELATION MIXTURE MODEL FOR MULTI-LABEL TEXT CATEGORIZATION
    He, Zhiyang
    Wu, Ji
    Lv, Ping
    [J]. 2014 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY SLT 2014, 2014, : 83 - 88
  • [7] Clustering Based Multi-Label Classification for Image Annotation and Retrieval
    Nasierding, Gulisong
    Tsoumakas, Grigorios
    Kouzani, Abbas Z.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 4514 - +
  • [8] Label prompt for multi-label text classification
    Song, Rui
    Liu, Zelong
    Chen, Xingbing
    An, Haining
    Zhang, Zhiqi
    Wang, Xiaoguang
    Xu, Hao
    [J]. APPLIED INTELLIGENCE, 2023, 53 (08) : 8761 - 8775
  • [9] Label prompt for multi-label text classification
    Rui Song
    Zelong Liu
    Xingbing Chen
    Haining An
    Zhiqi Zhang
    Xiaoguang Wang
    Hao Xu
    [J]. Applied Intelligence, 2023, 53 : 8761 - 8775
  • [10] INDUCTION IN HIERARCHICAL MULTI-LABEL TEXT CATEGORIZATION DOMAINS
    Dendamrongvit, Sareewan
    Kubat, Miroslav
    [J]. EIGHTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING APPLIED IN COMPUTER AND ECONOMIC ENVIRONMENTS, 2010, : 49 - 54