Interpolating polyhedral models using intrinsic shape parameters

被引:0
|
作者
Sun, YM
Wang, WP
Chin, FYL
机构
[1] Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong
来源
关键词
metamorphosis; computer animation; interpolation; shape transformation; object representation; planar graph;
D O I
10.1002/(SICI)1099-1778(199703)8:2<81::AID-VIS163>3.0.CO;2-W
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Metamorphosis, or morphing, is the gradual transformation of one shape into another. It generally consists of two subproblems: the correspondence problem and the interpolation problem. This paper presents a solution to the interpolation problem of transforming one polyhedral model into another. It is an extension of the intrinsic shape interpolation scheme (T. W. Sederberg, P. Gao, G. Wang and H. Mu, '2-D shape blending: an intrinsic solution to the vertex path problem, SIGGRAPH '93, pp. 15-18.) for 2D polygons. Rather than considering a polyhedron as a set of independent points or faces, our solution treats a polyhedron as a graph representing the interrelations between faces. Intrinsic shape parameters, such as dihedral angles and edge lengths that interrelate the vertices and faces in the two graphs, are used for interpolation. This approach produces more satisfactory results than the linear or cubic curve paths would, and is translation and rotation invariant. (C) 1997 by John Wiley & Sons, Ltd.
引用
收藏
页码:81 / 96
页数:16
相关论文
共 50 条
  • [21] CONSTRUCTING INTRINSIC PARAMETERS WITH ACTIVE MODELS FOR INVARIANT SURFACE RECONSTRUCTION
    VEMURI, BC
    MALLADI, R
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (07) : 668 - 681
  • [22] Intrinsic Volumes of Polyhedral Cones: A Combinatorial Perspective
    Amelunxen, Dennis
    Lotz, Martin
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (02) : 371 - 409
  • [23] Perspective Correction using Camera Intrinsic Parameters
    Li, Xin
    Liu, Wei
    Fan, Wei
    Sun, Jun
    Satoshi, Naoi
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 854 - 858
  • [24] Shape-shifting polyhedral droplets
    Haas, Pierre A.
    Cholakova, Diana
    Denkov, Nikolai
    Goldstein, Raymond E.
    Smoukov, Stoyan K.
    PHYSICAL REVIEW RESEARCH, 2019, 1 (02):
  • [25] Sequential estimation of shape parameters in multivariate dynamic models
    Amengual, Dante
    Fiorentini, Gabriele
    Sentana, Enrique
    JOURNAL OF ECONOMETRICS, 2013, 177 (02) : 233 - 249
  • [26] Generalized shape operators on polyhedral surfaces
    Hildebrandt, Klaus
    Polthier, Konrad
    COMPUTER AIDED GEOMETRIC DESIGN, 2011, 28 (05) : 321 - 343
  • [27] Interpolating matrix models for WLZZ series
    A. Mironov
    V. Mishnyakov
    A. Morozov
    A. Popolitov
    Rui Wang
    Wei-Zhong Zhao
    The European Physical Journal C, 83
  • [28] Shortness parameters for polyhedral graphs
    Owens, PJ
    DISCRETE MATHEMATICS, 1999, 206 (1-3) : 159 - 169
  • [29] Interpolating matrix models for WLZZ series
    Mironov, A.
    Mishnyakov, V.
    Morozov, A.
    Popolitov, A.
    Wang, Rui
    Zhao, Wei-Zhong
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (05):
  • [30] Analyzing the Polyhedral Shape of Mineral Inclusions in Diamond Crystals Using Goniometric Data
    Kvasnytsya, V. M.
    JOURNAL OF SUPERHARD MATERIALS, 2024, 46 (02) : 94 - 105