We suggest a two-matrix model depending on three (infinite) sets of parameters which interpolates between all the models proposed in Wang et al. (Eur Phys J C 82:902, arXiv:2206.13038, 2022) and defined there through W-representations. We also discuss further generalizations of the WLZZ models, realized by W-representations associated with infinite commutative families of generators of w∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$w_\infty $$\end{document}-algebra which are presumably related to more sophisticated multi-matrix models. Integrable properties of these generalizations are described by what we call the skew hypergeometric τ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau $$\end{document}-functions.