Interpolating matrix models for WLZZ series

被引:0
|
作者
A. Mironov
V. Mishnyakov
A. Morozov
A. Popolitov
Rui Wang
Wei-Zhong Zhao
机构
[1] MIPT,Department of Mathematics
[2] Lebedev Physics Institute,School of Mathematical Sciences
[3] ITEP,undefined
[4] Institute for Information Transmission Problems,undefined
[5] China University of Mining and Technology,undefined
[6] Capital Normal University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We suggest a two-matrix model depending on three (infinite) sets of parameters which interpolates between all the models proposed in Wang et al. (Eur Phys J C 82:902, arXiv:2206.13038, 2022) and defined there through W-representations. We also discuss further generalizations of the WLZZ models, realized by W-representations associated with infinite commutative families of generators of w∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_\infty $$\end{document}-algebra which are presumably related to more sophisticated multi-matrix models. Integrable properties of these generalizations are described by what we call the skew hypergeometric τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-functions.
引用
收藏
相关论文
共 50 条