This paper studies affine Deligne-Lusztig varieties Ka, (b) in the affine flag variety of a quasi-split tamely ramified group. We describe the geometric structure of K(sic) (b) for a minimal length element 71; in the conjugacy class of an extended affine Weyl group. We then provide a reduction method that relates the structure of X,(sic) (b) for arbitrary elements 71; in the extended affine Weyl group to those associated with minimal length elements. Based on this reduction, we establish a connection between the dimension of affine Deligne-Lusztig varieties and the degree of the class polynomial of affine Hecke algebras. As a consequence, we prove a conjecture of Gortz, Haines, Kottwitz and Reuman.
机构:
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
Chen, Ling
Nie, Sian
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
机构:
Imperial Coll London, Dept Math, Huxley Bldg,180 Queens Gate, London SW7 2AZ, EnglandImperial Coll London, Dept Math, Huxley Bldg,180 Queens Gate, London SW7 2AZ, England
Zhou, Rong
Zhu, Yihang
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USAImperial Coll London, Dept Math, Huxley Bldg,180 Queens Gate, London SW7 2AZ, England