Geometric and homological properties of affine Deligne-Lusztig varieties

被引:48
|
作者
He, Xuhua [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China
关键词
NEWTON STRATA; ISOCRYSTALS; DIMENSIONS; ELEMENTS;
D O I
10.4007/annals.2014.179.1.6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies affine Deligne-Lusztig varieties Ka, (b) in the affine flag variety of a quasi-split tamely ramified group. We describe the geometric structure of K(sic) (b) for a minimal length element 71; in the conjugacy class of an extended affine Weyl group. We then provide a reduction method that relates the structure of X,(sic) (b) for arbitrary elements 71; in the extended affine Weyl group to those associated with minimal length elements. Based on this reduction, we establish a connection between the dimension of affine Deligne-Lusztig varieties and the degree of the class polynomial of affine Hecke algebras. As a consequence, we prove a conjecture of Gortz, Haines, Kottwitz and Reuman.
引用
收藏
页码:367 / 404
页数:38
相关论文
共 50 条