Geometric and homological properties of affine Deligne-Lusztig varieties

被引:48
|
作者
He, Xuhua [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China
关键词
NEWTON STRATA; ISOCRYSTALS; DIMENSIONS; ELEMENTS;
D O I
10.4007/annals.2014.179.1.6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies affine Deligne-Lusztig varieties Ka, (b) in the affine flag variety of a quasi-split tamely ramified group. We describe the geometric structure of K(sic) (b) for a minimal length element 71; in the conjugacy class of an extended affine Weyl group. We then provide a reduction method that relates the structure of X,(sic) (b) for arbitrary elements 71; in the extended affine Weyl group to those associated with minimal length elements. Based on this reduction, we establish a connection between the dimension of affine Deligne-Lusztig varieties and the degree of the class polynomial of affine Hecke algebras. As a consequence, we prove a conjecture of Gortz, Haines, Kottwitz and Reuman.
引用
收藏
页码:367 / 404
页数:38
相关论文
共 50 条
  • [1] FINITENESS PROPERTIES OF AFFINE DELIGNE-LUSZTIG VARIETIES
    Hamacher, Paul
    Viehmann, Eva
    DOCUMENTA MATHEMATICA, 2020, 25 : 899 - 910
  • [2] Affine Deligne-Lusztig varieties in affine flag varieties
    Goertz, Ulrich
    Haines, Thomas J.
    Kottwitz, Robert E.
    Reuman, Daniel C.
    COMPOSITIO MATHEMATICA, 2010, 146 (05) : 1339 - 1382
  • [3] STRATIFICATIONS OF AFFINE DELIGNE-LUSZTIG VARIETIES
    Goertz, Ulrich
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (07) : 4675 - 4699
  • [4] DIMENSIONS OF AFFINE DELIGNE-LUSZTIG VARIETIES IN AFFINE FLAG VARIETIES
    Goertz, Ulrich
    He, Xuhua
    DOCUMENTA MATHEMATICA, 2010, 15 : 1009 - 1028
  • [5] Dimensions of some affine Deligne-Lusztig varieties
    Goertz, Ulrich
    Haines, Thomas J.
    Kottwitz, Robert E.
    Reuman, Daniel C.
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (03): : 467 - 511
  • [6] Geometric structure of affine Deligne-Lusztig varieties for GL3
    Shimada, Ryosuke
    JOURNAL OF ALGEBRA, 2023, 623 : 86 - 126
  • [7] The Dimension of Affine Deligne-Lusztig Varieties in the Affine Grassmannian
    Hamacher, Paul
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (23) : 12804 - 12839
  • [8] ON THE CONNECTED COMPONENTS OF AFFINE DELIGNE-LUSZTIG VARIETIES
    He, Xuhua
    Zhou, Rong
    DUKE MATHEMATICAL JOURNAL, 2020, 169 (14) : 2696 - 2765
  • [9] Irreducible components of affine Deligne-Lusztig varieties
    Nie, Sian
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2022, 10 (02) : 433 - 510
  • [10] The dimension of some affine Deligne-Lusztig varieties
    Viehmann, Eva
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (03): : 513 - 526