THE COEFFICIENTS OF THE ω(q) MOCK THETA FUNCTION

被引:9
|
作者
Garthwaite, Sharon Anne [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Mock theta functions; Poincare series; modular forms;
D O I
10.1142/S1793042108001869
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1920, Ramanujan wrote to Hardy about his discovery of the mock theta functions. In the years since, there has been much work in understanding the transformation properties and asymptotic nature of these functions. Recently, Zwegers proved a relationship between mock theta functions and vector-valued modular forms, and Bringmann and Ono used the theory of Maass forms and Poincare series to prove a conjecture of Andrews, yielding an exact formula for the coefficients of the f(q) mock theta function. Here we build upon these results, using the theory of vector-valued modular forms and Poincare series to prove an exact formula for the coefficients of the omega(q) mock theta function.
引用
收藏
页码:1027 / 1042
页数:16
相关论文
共 50 条
  • [41] Transformation formula of the "second" order mock theta function
    Hikami, K
    LETTERS IN MATHEMATICAL PHYSICS, 2006, 75 (01) : 93 - 98
  • [42] Completions and algebraic formulas for the coefficients of Ramanujan's mock theta functions
    Klein, David
    Kupka, Jennifer
    RAMANUJAN JOURNAL, 2021, 56 (03): : 1029 - 1060
  • [43] Partitions generated by Mock Theta Functions ρ(q), σ(q) and ν(q) and relations with partitions into distinct parts
    Bagatini, Alessandro
    Matte, Marilia Luiza
    Wagner, Adriana
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (01) : 54 - 74
  • [44] Proofs of Silva–Sellers’ conjectures on a mock theta function
    Olivia X. M. Yao
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [45] Higher depth mock theta functions and q-hypergeometric series
    Males, Joshua
    Mono, Andreas
    Rolen, Larry
    arXiv, 2021,
  • [46] Mock theta functions in terms of q-hypergeometric double sums
    Zhang, Zhizheng
    Li, Xiaoqian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (06) : 1715 - 1728
  • [47] On the vanishing of coefficients of the powers of a theta function
    Jacques Sauloy
    Changgui Zhang
    The Ramanujan Journal, 2022, 57 : 1125 - 1167
  • [48] Higher depth mock theta functions and q-hypergeometric series
    Males, Joshua
    Mono, Andreas
    Rolen, Larry
    FORUM MATHEMATICUM, 2021, 33 (04) : 857 - 866
  • [49] On the vanishing of coefficients of the powers of a theta function
    Sauloy, Jacques
    Zhang, Changgui
    RAMANUJAN JOURNAL, 2022, 57 (03): : 1125 - 1167
  • [50] INTEGER COEFFICIENTS OF THETA FUNCTION NOME
    FERGUSON, HRP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (03): : A408 - A408