共 50 条
Proofs of Silva–Sellers’ conjectures on a mock theta function
被引:0
|作者:
Olivia X. M. Yao
机构:
[1] Suzhou University of Science and Technology,School of Mathematical Sciences
来源:
关键词:
Mock theta function;
Congruences;
Theta functions;
-parametrization of theta functions;
11P83;
05A17;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Recently, Silva and Sellers proved a number of nice congruences for the third order mock theta function ξ(q)=1+2∑n=1∞q6n2-6n+1(q;q6)n(q5;q6)n,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \xi (q)=1+2\sum _{n=1}^\infty \frac{q^{6n^2-6n+1}}{(q;q^6)_n (q^5;q^6)_n }, \end{aligned}$$\end{document}which was introduced by Gordon and McIntosh. At the end of their paper, they posed two conjectures on congruences for the coefficients of ξ(q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\xi (q)$$\end{document}. In this paper, we confirm the two conjectures due to Silva and Sellers by utilizing the (p, k) -parametrization of theta functions.
引用
收藏
相关论文