A Pata-type fixed point theorem in modular spaces with application

被引:11
|
作者
Paknazar, Mohadeseh [1 ]
Eshaghi, Madjid [2 ]
Cho, Yeol Je [3 ,4 ]
Vaezpour, Seyed Mansour [5 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Math, Tehran, Iran
[2] Semnan Univ, Dept Math, Semnan, Iran
[3] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[4] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
[5] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran, Iran
关键词
fixed point; modular spaces; nonlinear integral equations;
D O I
10.1186/1687-1812-2013-239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a Pata-type fixed point theorem in modular spaces which generalizes and improves some old results. As an application, we study the existence of solutions of integral equations in modular function spaces.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Fixed points of multivalued mappings satisfying hybrid rational Pata-type inequalities
    Binayak S. Choudhury
    N. Metiya
    C. Bandyopadhyay
    P. Maity
    The Journal of Analysis, 2019, 27 : 813 - 828
  • [22] FIXED POINT THEOREM AND ITS APPLICATION TO PERTURBED INTEGRAL EQUATIONS IN MODULAR FUNCTION SPACES
    Hajji, Ahmed
    Hanebaly, Elaidi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2005,
  • [23] A common fixed point theorem for new type compatible maps on modular metric spaces
    Kaplan, Elif
    Kutukcu, Servet
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (01)
  • [24] DEMARR'S FIXED POINT THEOREM IN MODULAR VECTOR SPACES
    Abdou, Afrah A. N.
    Khamsi, Mohamed A.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (07) : 1083 - 1091
  • [25] A FIXED POINT THEOREM FOR QUASI-CONTRACTION MAPPINGS IN PARTIALLY ORDER MODULAR SPACES WITH AN APPLICATION
    Gordji, M. Eshaghi
    Sajadian, F.
    Cho, Y. J.
    Ramezani, M.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (02): : 135 - 146
  • [26] A fixed point theorem in probabilistic metric spaces and an application
    Pap, E
    Hadzic, O
    Mesiar, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 202 (02) : 433 - 449
  • [27] A Fixed Point Theorem for Uniformly Lipschitzian Mappings in Modular Vector Spaces
    Alfuraidan, M. R.
    Khamsi, M. A.
    Manav, N.
    FILOMAT, 2017, 31 (17) : 5435 - 5444
  • [28] A NEW VERSION OF KRASNOSELSKII'S FIXED POINT THEOREM IN MODULAR SPACES
    Razani, A.
    Mohamadi, M. Beyg
    Pour, S. Homaei
    Nabizadeh, E.
    FIXED POINT THEORY, 2008, 9 (02): : 533 - 539
  • [30] SOME FIXED POINT RESULTS FOR CARISTI TYPE MAPPINGS IN MODULAR METRIC SPACES WITH AN APPLICATION
    Turkoglu, Duran
    Kilinc, Emine
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2016, 12 (01): : 15 - 21