A NEW VERSION OF KRASNOSELSKII'S FIXED POINT THEOREM IN MODULAR SPACES

被引:0
|
作者
Razani, A. [1 ,2 ]
Mohamadi, M. Beyg [3 ]
Pour, S. Homaei [3 ]
Nabizadeh, E. [3 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Math, Qazvin, Iran
[2] Inst Studies Theoret Phys & Math IPM, Tehran, Iran
[3] Iran Univ Sci & Technol, Dept Math, Tehran, Iran
来源
FIXED POINT THEORY | 2008年 / 9卷 / 02期
关键词
fixed point; modular space;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a new version of Krasnoselskii's fixed point theorem in modular spaces is presented.
引用
收藏
页码:533 / 539
页数:7
相关论文
共 50 条
  • [1] Best proximity version of Krasnoselskii’s fixed point theorem
    S. Kar
    P. Veeramani
    [J]. Acta Scientiarum Mathematicarum, 2020, 86 : 265 - 271
  • [2] Best proximity version of Krasnoselskii's fixed point theorem
    Kar, S.
    Veeramani, P.
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2020, 86 (1-2): : 265 - 271
  • [3] Remark on Krasnoselskii's fixed point theorem
    Vladimirescu, Cristian
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) : 876 - 880
  • [4] On Krasnoselskii's Cone Fixed Point Theorem
    Man Kam Kwong
    [J]. Fixed Point Theory and Applications, 2008
  • [5] On Krasnoselskii's cone fixed point theorem
    Kwong, Man Kam
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
  • [6] A NEW FIXED POINT THEOREM IN MODULAR METRIC SPACES
    Mutlu, Ali
    Ozkan, Kubra
    Gurdal, Utku
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (04): : 472 - 483
  • [7] Krasnoselskii's fixed point theorem and stability
    Burton, TA
    Furumochi, T
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (04) : 445 - 454
  • [8] A multivalued version of Krasnoselskii's theorem in generalized Banach spaces
    Petre, Ioan-Radu
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (02): : 177 - 192
  • [9] DEMARR'S FIXED POINT THEOREM IN MODULAR VECTOR SPACES
    Abdou, Afrah A. N.
    Khamsi, Mohamed A.
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (07) : 1083 - 1091
  • [10] Generalizations of Krasnoselskii's fixed point theorem in cones
    Budisan, Sorin
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (04): : 165 - 171